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ABSTRACT
ACTIVE LEARNING FOR LOGISTIC REGRESSION
Andrew Ian Schein

Supervisor: Lyle H. Ungar

Which active learning methods can we expect to yield good performance in learn-
ing logistic regression classifiers? Addressing this question is a natural first step in
providing robust solutions for active learning across a wide variety of exponential
models including maximum entropy, generalized linear, loglinear, and conditional
random field models. We extend previous work on active learning using explicit
objective functions by developing a framework for implementing a wide class of loss
functions for active learning of logistic regression, including variance (A-optimality)
and log loss reduction. We then run comparisons against different variations of the
most widely used heuristic schemes: query by committee and uncertainty sampling,

to discover which methods work best for different classes of problems and why.

Our approach to loss functions for active learning borrows from the field of op-
timal experimental design in statistics. We exploit several properties of nonlinear
regression models that allow computation of the variance of a prediction with respect
to the model’s input distribution. The strategy of minimizing prediction variance is
referred to as A-optimality. A Taylor series approximation of many loss functions
conveniently factorizes into alternative weightings of this variance computation. We

investigate squared and log loss within this framework.

Our empirical evaluations are the largest effort to date to evaluate explicit objec-
tive function methods in active learning. We employed ten data sets in the evaluation
from domains such as image recognition and document classification. The data sets
vary in number of categories from 2 to 26 and have as many as 6,191 predictors.
This work establishes the benefits of these often cited (but rarely used) strategies,

and counters the claim that experimental design methods are too computationally

vii



complex to run on interesting data sets. The two loss functions were the only meth-
ods we tested that always performed at least as well as a randomly selected training
set.

The same data were used to evaluate several heuristic methods, including uncer-
tainty sampling, heuristic variants of the query by committee method, and a method
that maximizes classifier certainty. Uncertainty sampling was tested using two dif-
ferent measures of uncertainty: Shannon entropy and margin size. Margin-based
uncertainty sampling was found to be superior; however, both methods perform
worse than random sampling at times. We show that these failures to match ran-
dom sampling can be caused by predictor space regions of varying noise or model
mismatch. The various heuristics produced mixed results overall in the evaluation,
and it is impossible to select one as particularly better than the others when us-
ing classifier accuracy as the sole criterion for performance. Margin sampling is the

favored approach when computational time is considered along with accuracy.
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Chapter 1

Introduction

Procurement of labeled training data is the seminal step of training a supervised
machine learning algorithm. A recent trend in machine learning has focused on pool-
based settings where unlabeled data is inexpensive and available in large supply, but
the labeling task is expensive. Pool-based active learning methods attempt to reduce
the “cost” of learning in a pool-based setting by using a learning algorithm trained
on the existing data and selecting the portion of the remaining data with the greatest
expected benefit. In classification settings benefit may be measured in terms of the

generalization accuracy (or error) of the final model.

The last decade has also seen increased use of the logistic regression classifier
in machine learning applications, though often under different names: multinomial
regression, multi-class logistic regression or the maximum entropy classifier. In this
dissertation we address the question of how to best perform pool-based active learn-
ing with the logistic regression model. We view treatment of this problem as a
natural first step in developing active learning solutions to the expansive set of mod-
els derived from the exponential family of distributions, of which logistic regression

is a member.



1.1 Active Learning: a Definition

Active learning is defined as a setting where a learning agent interacts with its
environment in procuring a training set, rather than passively receiving an i.i.d.
sample from some underlying distribution. The term pool-based active learning is
used to distinguish sampling a pre-defined pool of examples from other forms of
active learning including methods that construct examples from R™ or other sets
from first principles. Henceforth we will often use the term active learning to refer
to pool-based active learning; since the dissertation does not treat the other forms,
no confusion will arise. Furthermore, we focus almost entirely on the problem of
training classifiers.

The purpose of developing active learning methods is to achieve the best possible
generalization error at the least cost, where cost is usually measured as a function
of the number of examples labeled. Frequently we plot the tradeoff between number
of examples labeled and generalization error through learning curves of the type
introduced in Chapter 2. It is commonly believed that there should exist active
learning methods that perform at least as well as random sampling from a pool at
worst, and these methods should often outperform random sampling. This belief is
given theoretical justification under very specific assumptions [27, 64], but is also

occasionally contradicted by empirical evaluations.

1.2 Why Active Learning Is Hard

Active learning is hard because random sampling from the pool provides a very
competitive baseline. As a rule of thumb, the generalization error rate of a machine
learning algorithm decreases according to:
b
Etest =a+ TL_O‘ (1.1)

2



where n is the training set size, and a, b and o depend on the task and learning
algorithm [24, Chapter 9]. The very attractive baseline provided by random sampling
from the pool is the primary challenge that active learning methods must overcome
to justify their use.

In order for active learning to be accepted in industrial applications it must guar-
antee that the performance will offset the cost of implementing a nonrandom sam-
pling scheme and retraining the machine learning algorithm repeatedly. Particularly
daunting is that active learning is most useful when applied to a new domain where
there are few examples. In a new domain, we have little guarantee that heuristics

that worked in the past will work again without tuning and tweaking.

1.3 A Perspective on Active Learning

The earliest research in active learning stressed counterexample requests (e.g. [2]) or
query construction [14, 46]. Focus soon turned to methods applicable to pool-based
active learning including the query by committee method [64] and experimental de-
sign methods based on A-optimality [14]. The above methods are motivated by
theory and explicit objective functions. Empirical evaluation of such objective func-
tion approaches has been scant due to computational costs associated with these
methods. Of late, there are some signs of renewed interest in objective function
approaches [34].

There has been growing interest in application of active learning to real-world
data sets. A trend of the last ten years [1, 3, 20, 38, 45, 51, 54, 60, 70] has been
to employ heuristic methods of active learning with no explicitly defined objective
function. Uncertainty sampling [45], query by committee [64]!, and variants have

proven particularly attractive because of their portability across a wide spectrum of

'Query by Committee is a method with strong theoretical properties under limited circum-
stances [27, 64], but the overwhelming trend has been to apply the method in circumstances where
the theory does not apply. Often the term Query by Bagging is used to describe such ad hoc
applications. Chapter 2 contains further discussion.



machine learning algorithms. A subtrend in the field has sought to improve perfor-
mance of heuristics by combining them with secondary heuristics such as: similarity
weighting [51], interleaving active learning with EM [51], interleaving active learning

with co-training [67], and sampling from clusters [70], among others.

1.4 Thesis

The primary contributions of this thesis are conclusions about which of the many
methods of pool-based active learning are likely to perform well for logistic regression
and under what conditions. There are two main components of this work that
support our conclusions. First, we re-examine the theory of experimental design in
the context of the logistic regression classifier. A technique for minimizing prediction
variance known as A-optimality emerges. We generalize this result to apply to a wider
variety of loss functions and specifically explore log loss. Second, we use our two
principled loss functions along with random sampling as a baseline in evaluating the
alternative heuristic methods of active learning. Ultimately, we use the evaluations

to make conclusions about the performance of different active learning methods.

The empirical investigations within this dissertation have several pertinent fea-
tures. Our evaluations of the loss function methods are the largest scale of any to
date in a pool-based active learning setting. So these evaluations are an opportunity
to test the hypothesis that the computational costs of principled methods come with
performance gains. Noting that heuristic methods occasionally perform worse than
random, we also explore the causes of these failures, and identify conditions that

lead the uncertainty sampling heuristics to failure.

4



1.5 Variance Reduction (A-Optimality) Explained

Logistic regression is a method that assigns probabilities to the class labels of obser-
vations. We choose as our first objective for active learning of logistic regression the

minimization of the prediction variance:
> Varpli(c,x;D)] = Y Ep [(#(c,x;D) — Epli(c, x; D)])? (1.2)

where 7(c,x; D) is a logistic regression model trained on D. The model outputs the
predicted probability that label c¢ is associated with observation x. The parameter
c indexes the different categories of the classification task, and the expectation Ep
is with respect to training sets of fixed size. More generally, we can compute the
prediction variance over an entire set of examples, for instance the pool of unlabeled
data.

This is the same variance term that emerges from the bias/variance decomposi-
tion of mean squared error (MSE) (detailed in Chapter 4). Statistical theory gov-
erning the behavior of the members of the exponential family (logistic regression is
a member) permit an asymptotically correct measurement of variance. These two
essential components, the ability to measure variance, and a link between decrease
of variance and decrease in mean squared error make Equation 1.2 a compelling

objective function for active learning.

1.6 Applicability of Our Approach to Structured
Data

Beyond the classification setting there are a variety of prediction tasks where response
variables are statistically dependent. Such prediction problems include: part of
speech tags [19], parse trees [17], simultaneous predictions of syntax and semantics,

optical character recognition, and gesture [50], among many others. In developing

5



active learning solutions for these tasks it is natural to look first at the simpler
classification setting for hints about which theories work and why.

For this reason, we spend a bit of time relating logistic regression to more expres-
sive models capable of handling prediction of discrete categories that are statistically
dependent. Chapter 4 develops the theory of A-optimality and touches on applica-
bility of the approach to more general settings. The methodology and results of
diagnosing noise, squared bias and variance portions of squared error developed in
the dissertation is also relevant to statistically dependent response variables. The
heuristics employed for logistic regression active learning are applicable to learning

in the presence of statistically dependent response variables, as well.

1.7 Dissertation Road Map

The remainder of the dissertation proceeds as follows. Chapter 2 reviews the various
methods of active learning evaluated and gives some historical background. Chap-
ter 3 introduces the logistic regression classifier, details its statistical properties and
explains its relationship to other well-studied models. Chapter 4 introduces a loss
function approach to active learning motivated by experimental design. Chapter 5
describes the empirical evaluation and results for all methods, while Chapter 6 ex-
amines the effects of alternative evaluation design decisions. Chapter 7 summarizes

the findings of the dissertation.



Chapter 2

Pool-Based Active Learning for

Classifiers: A Review

In this chapter we introduce some of the core algorithms and concepts from pool-
based active learning and experimental design. The main focus is on classification
problems with noise, and on active learning methods that can be used with logistic
regression. We also touch on developments for linear regression in order to introduce
some of the important concepts from the field of experimental design as a whole. We
omit discussion of recent developments specific to other learning algorithms, such as

large margin classifiers [26, 62, 73] and Bayesian belief networks [72].

Here, we present the theory of A-optimality and give a historical perspective on
where it has been derived and how it has been applied in active learning. Through
extensive literature review we demonstrate that the method has not been thoroughly
evaluated in pool-based active learning scenarios. In fact, we find only one known
evaluation on a non-artificial data set. There have been several evaluations using
artificial neural networks on artificial data, but these data sets have had only a small

number of predictors.



Following a convention that has developed in the active learning field we di-
vide the “classical” active learning approaches of the early to mid 1990s into “ob-
jective function” and “heuristic” (or “algorithm independent”) methods. The ob-
jective function methods include experimental design methods such as A, D, and
c—optimality. The heuristic methods include uncertainty sampling and query by
committee. In actuality, the line between having an explicit objective function and
a heuristic can be blurred as heuristic approximations to objective functions are
made for the benefit of expediency. An alternative view is that a heuristic approach
is actually an objective function approach whose assumptions have not yet been

exposed.

2.1 A General Purpose Active Learning Frame-

work

Algorithm 1 A Generalized Active Learning Loop

Require: partial training set, pool of unlabeled examples
repeat
Select T random examples from pool
Rank T examples according to active learning rule
Present the top-ranked example to oracle for labeling
Augment the training set with the new observation
until Training set reaches desirable size

Different approaches to active learning amount to different methods of assessing
the value of labeling individual examples. All pool-based active learning methods
fit into a common framework described by Algorithm 1. The key difference between
active learning methods is the method for ranking the candidate observations for
labeling. The framework is wide open to the type of ranking rule employed. Usually,
the ranking rule incorporates the model trained on the currently labeled data. This

is the reason for the requirement of a partial training set when the algorithm begins.



Other active learning researchers use variants of Algorithm 1. For example, some
label the top n examples in addition to the top example in order to decrease the
number times a learner is retrained. Other researchers mix active learning with
random labels. This dissertation will focus on labeling one example at a time. In

principle this gives a rigorous method the opportunity to pick only the best examples.

2.2 Objective Function Approaches

Objective function active learning methods such as D, ¢, and A-optimality explicitly
quantify the differences between an ideal classifier and the currently learned model
in terms of a loss or other type of objective function. Borrowing notation from
Roy and McCallum [60] for the special case where the learning algorithm outputs a

probability distribution, a representation of an objective function follows:

| Laulx). Fo(ulx) P(x), (21)

where L is a loss function, 7(y|x) are the probabilities associated with a model trained
on the entire pool, and 7p(y|x) are the probabilities of a model trained on a partial
representation of the pool where observations (x,y) follow training set distribution
D. P(x) is the distribution governing predictor variables estimated using the pool,
which is presumably quite large. Example loss functions for Equation 2.1 include

log loss and squared loss.

In many settings a model outputs something other than a probability, such as a

real value, in which case the notation needs altering:

[ LU x5 w), £ (x5%))P () (2.2

where w and W are parameters analogous to 7 and 7.



2.2.1 A-Optimality for Linear Regression Models

To maintain chronological accuracy and develop the requisite algebraic methodology,
we start with the classic design criteria of linear regression [25], with the familiar

model of the data given by a Gaussian with an isotropic noise model:
Viwer ~ N(WX,0%I). (2.3)

The vector y encodes a set of real values. X is the design matrix, and its rows consist
of the predictors of the model. The vector w is the parameter vector of the model.

The maximum likelihood solution is equivalent to the least squares solution:

. e o 2
arg min Xn:(yn W Xy,) (2.4)
w = (X'X) X'y (2.5)

The matrix X'X is the observed Fisher information matrix of the linear regression.
The model is frequently regularized by adding a penalty according to the mag-

nitude of ||w||*:

1
: _ . 2 o 2
arg min an(yn W - Xp) +2G§I|w|| (2.6)
. I
w = (X’X+§1) X'y (2.7)
p

in which case the Fisher information matrix becomes: (X'X + —21). The regularized
p
variant is equivalent to a Bayesian linear regression where Equation 2.3 is augmented

with the assumption:
w ~ N(0,001), (2.8)

where the p in o, stands for “prior” to draw attention to the fact that it is a different
parameter from the error variance o2 of Equation 2.3.

Having defined the model of interest, linear regression, we contemplate now what
objective function will obtain good prediction accuracy. A large portion of the exper-

imental design literature has focused on two types of experimental goals: extremum
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performance and model identification problems. This dissertation is concerned with
the quality of predictions over the pool where the pool is taken as an accurate repre-
sentation of the distribution of a final test set. Therefore we focus on an extremum
problem: minimizing an expected loss computed over the pool.

The common choice of loss for real-valued regression modeling is expected squared
error, which decomposes into portions that represent pure noise (or model misspec-

ification) and loss due to small training set size:

El(y — f(x;D))*}x,D] = E[(y — E[y[x])*|x,D] “Noise” (2.9)

+ (f(x;D) — Efy[x])*. (2.10)

The E above is an expectation with respect to the probability distribution generating
observations (x,y). The term E[y|x| represents the expectation of y given x according
to the true distribution generating (x,y). The variable D represents a training set.
The second term is highly dependent on the training set while the first term is
independent due to conditioning.

The mean squared error (MSE) of f is the expectation of the second term with

respect to training sets D of fixed size s:

Eo, [(f(x;D) — Eylz])?]. (2.11)

The variable s is frequently omitted in the literature, a convention we will adopt.

MSE is difficult to measure; even if we could compute Ep we do not have access to

Ely|z].
Fortunately, mean squared error may be decomposed into bias and variance por-

tions of error which are both somewhat easier to estimate:
En[(f(x;D) — Elylz])?] = (Ep[f(z;D)]— E[y|a])* “bias squared”  (2.12)

+Ep[(f(z; D) — Ep[f(x;D)])?]. “variance”

[33] provides more details on these identities. The variance term describes the ten-

dency of regressors to vary with respect to an input distribution of fixed size. The
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bias term captures the difference between the expected model output and the actual
expected value of y given x. We will explore these concepts in greater depth in
chapter 4.

For linear regression, an experimental design objective function often used to

obtain good prediction accuracy is the variance component of MSE:
Var[f(x;D)] = Ep[(f(x;D)— Epf(x;D))?. (2.13)

There are two reasons for the popularity of this technique. The first is that it is ev-
ident from the decomposition (2.12) that decreasing variance will lead to decreased
MSE. The second reason is that statistical theory allows efficient estimation of vari-
ance.

Some needed facts in deriving an optimality criteria from this objective function
follow. First, let w be the maximum likelihood (and therefore least squares) param-
eters for linear regression. Then w ~ N (w, F~!), where w, W are both vectors, F is
the Fisher information matrix [63], and Var(w'x) = xF~'x as a consequence of nor-
mality of w. With this result in hand, we derive the prediction variance incurred by
making predictions over the pool of unlabeled data. Define 4, = x,x, A =3, A

and compute:

> Var(x,w) = Y x,F 'x, by Normality (2.14)
nePool nePool
= > tr{xnx;F*I} (2.15)
nePool
= Y u{ar} (2.16)
nePool
= tr{AF'}. (2.17)

Equation 2.17 is referred to as A-optimality due to the A matrix that gives the
method its name. Equation 2.14 is referred to as c-optimality; when the vectors x,,
are renamed c, the naming becomes more apparent.

Before moving on, we give a formal definition of the Fisher information matrix

12



computed over a likelihood function f:

& In J(X]6) lnf(XW)] . (2.18)

1(6);;, = —
(6):s l 00,00,
For expediency, we will frequently denote the matrix I(6) as F', making implicit the

dependence on the parameters 6.

2.2.2 D-Optimality for Linear Regression Models

Imagine the goal of training a statistical model is the model itself rather than the
application of the model. For instance, the slope in a simple linear regression can
represent the dependence of a reaction rate on the abundance of substrate. Learning
the slope parameter accurately gives insight into a natural phenomenon.
D-optimality concerns the model identification objective of designing experi-
ments. Though our focus in this dissertation with classification accuracy leads
to prediction accuracy rather than model identification as our primary focus, the
reader will benefit from knowledge of this very popular experimental design criterion
in placing the current active learning approaches in context. It is virtually impos-
sible to find introductions to statistical experimental design without references to
D-optimality, and so it will be helpful to understand the method. Furthermore,
there are applications of active learning objective functions that follow in the spirit
of D-optimality [72] so having a definition of D-optimality will help identify this
trend and note its difference from the A-optimality “prediction variance” approach.
Since the maximum likelihood parameters w of a linear regression follow a normal

distribution w ~ N (w, F~1) [63], we may write out the distribution over parameters:

P(W|w, X,02) = (%)dﬂ |;_1| exp{—%(w—w)'F(w—w)} (2.19)

From the Gaussian above we see that a measure of parameter variance is given by

the determinant: |F'|. In geometric terms, this is the inverse of the volume of the

parallelepiped encoded by the rows of the Fisher information matrix. Maximizing
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this determinant gives the D-optimality criterion. The D in the name D-optimality
comes from “determinant.”
In the Bayesian setting, we may derive the D-optimality criterion through the

Shannon information measure of model uncertainty:

/ P(y, w|X) log 7P(v|;f(|z:;)X)

Noting that P(w) does not depend on the design X, we may reexpress the objective

dw dy. (2.20)

function in a more streamlined form:
/P(y,w|X) log P(w|y, X) dw dy. (2.21)

Our goal is to maximize the expected information gain from the experiment,
which is equivalent to maximizing the Kullback-Leibler (KL) divergence between the

prior and posterior models. Applied to linear regression, Equation 2.21 becomes [12]:

k

ko1 o
—3 log(2m) — - + 3 log det {0 F} , (2.22)

2

and once again we find that maximizing |F'| is the optimal solution. As a byproduct
of these derivations, we see that maximizing the expected information gain on the
linear regression parameters is equivalent to minimizing model uncertainty.

In both D- and A-optimality for linear regression, selecting examples is indepen-
dent of the response values y, a fact exploited by Schein et al. [61] for selecting a
training set before any labeling at all has occurred. In nonlinear models, we are not

so lucky; the Fisher information depends on the response of the design matrix.

2.2.3 A-Optimality for Nonlinear Regression Models

A-optimality can be extended to a wide range of non-linear regression models; a
template is given in [12]. In Chapter 4 we derive a method for logistic regression.
For now we explore the special case of backpropagation neural networks (BPNN)

where the method has been applied in the past. In his Ph.D. dissertation [46]
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and companion publications [48, 47], MacKay derives the A-optimality and similar
information-based objective functions for active learning of backpropagation neural
networks inside a Bayesian setting. It was Cohn [14] who first evaluated A-optimality
for backpropagation neural networks on “natural” data.

Neural networks may be trained using a variety of loss functions. Our discussion
of backpropagation neural networks will consist solely of those networks fit with the
least squares objective function, with its implicit Gaussian likelihood interpretation,
i.e. we find parameter vector w that minimizes [7]:

1

52
%

Z(f(xn;W,A) - tn)2 +

> w} (2.23)
n d
where %, is the observed training set output for observation n, and the second term
in the summation provides model shrinkage as in the linear case. From this point
we ignore the parameter A specifying the network architecture, and assume the
architecture is fixed. The objective function to be minimized through active data
selection is again the variance:

> Varlf(xsiD)] = X Eol(f(xiD) ~ Enf(xaiD))?.  (2:24)

nePool nePool

The derivation of A-optimality for back-propagation neural networks follows in
the spirit of the logistic regression derivations described in Chapter 4. Key differences
exist between employing the method for logistic regression and backpropagation
neural networks, at least when comparing the implementations of this dissertation to
the previous implementations for backpropagation neural networks. Neural networks
suffer from local minima in the training surface whereas logistic regression has a
global maximum. The issue is relevant when retraining the models quickly using
previously estimated parameters as seeds. The Fisher information matrix of 2.23 is
frequently approximated in the neural network literature (e.g. [14]), whereas our
evaluations will employ the actual Fisher information matrix for logistic regression.

A-optimality for BPNN was evaluated on natural data by Cohn [14] who trained

a neural network with 2 inputs, a single layer of 20 hidden units, and 2 outputs
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for a grand total of 80 parameters encoded in vector w. Hidden and output units
were sigmoid, trained with the backpropagation procedure which minimizes squared
error. The method was evaluated by selecting up to 100 observations. Despite an
extensive search of the literature through document databases such as Researchindex,
we could not find any other evaluation of nonlinear regression variance reduction
active learning on natural data in a pool-based active learning setting. This is
surprising given that Cohn’s 1996 paper [14] and its earlier incarnation [13] are very
well cited. Personal communication with Dr. Cohn, however, substantiates this

assertion [16].

We were able to find some evaluations of variance reduction active learning on
artificial data [31, 69]. The examples that include noise in the data generation
process use a homoscedastic noise generator, in contrast to real data which often
contain heteroscedastic noise. The number of input units in these evaluations never
exceed 4 and the number of hidden layer units never exceed 7. A single output unit
was used in these evaluations. The largest number of parameters ever employed in
an evaluation on artificial data that we could find was 35, and the evaluation was by
Fukumizu [31]. Because of the larger size and different noise structure of real data,
there is no guarantee that the simulated data results above will hold for natural

data.

2.2.4 An Information Theoretic Variant of A-Optimality

The derivation of A-optimality suggests a closely related information theoretic objec-
tive function [46, 48]. The intuition is the following. Since the A-optimality criterion
is derived by adding up the variance terms of individual Gaussians that result from
predictions over the pool, why not use instead the entropy of those individual Gaus-

sians and add them up? Let S(P(y,)) denote the entropy from the prediction on
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observation n. The resulting objective function is:

$ = Y S(P) (2.25)

1
= 3 > log(cl, F~"c,) + constant (2.26)

This quantity differs from A-optimality, since entropy is a nonlinear function of
the variance term (¢, F~'c,). This is not the first information theory criterion we
have seen: recall the information theoretic definition of D-optimality in Section 2.2.2.
Variants of Equation 2.26 have been applied in experimental design as well, and are

reviewed in [12].

2.2.5 Bias and Mean Squared Error Minimization

In addition to variance-minimization techniques such as A-optimality, researchers
have attempted to minimize other portions of the error decomposition of Equa-
tion 2.12. Cohn [15] explores minimization of the bias squared portion of error for
locally weighted regression models using techniques such as fitting a higher order
polynomial and measuring the difference, residual bootstrapping, and fitting the
model’s own cross-validated residuals. Sugiyama and Ogawa [68] minimize both bias
and variance through a two-stage sampling approach. Both methods look promising,
but empirical evaluation across diverse natural data sets is still lacking. Through
our own evaluations, we will gain a sense of how much improvement is gleaned from
variance minimization of logistic regression. This should help assess the need to

develop solutions for other portions of mean squared error.

2.3 Algorithm Independent Approaches

We now turn to algorithm-independent approaches to active learning such as uncer-

tainty sampling and query by committee. In the general classification setting that
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this dissertation focuses on, little can be said that relates these approaches to ex-
plicit objective functions. Under a few assumptions, including at a minimum the
assumption that classification is a noise free function of the predictors, it may be
possible to establish a relationship between each of these methods and an objective
function.

The lack of principled motivation for these heuristic methods in more general
settings has not stopped the empirical machine learning community from evaluating
the methods on actual data sets [1, 3, 20, 38, 45, 51, 54, 60, 70, 71]. In fact, by
looking at the literature that has amassed around the heuristic methods, one gains
a sense of optimism for active learning as a whole. Our own experience with these
methods paints a less rosy picture; the methods frequently produce results that are
worse than random sampling from the pool. Traces of these negative results can be
found within the empirical evaluations cited, but we wonder whether the literature
as a whole might be biased towards positive results.

In our evaluations we look at three types of heuristics for active learning: un-
certainty sampling, query by committee and classifier certainty. We describe these
methods along with their computational complexities, and then briefly review vari-

ations of these methods in the remaining subsections.

2.3.1 Uncertainty Sampling

Uncertainty sampling is a term invented by Lewis and Gale [45], though the ideas can
be traced back to the query methods of Hwang et al. [39] and Baum [4]. We discuss
the Lewis and Gale variant since it is widely implemented and general to probabilistic
classifiers such as logistic regression. The uncertainty sampling heuristic chooses for
labeling the example for which the model’s current predictions are least certain. The
intuitive justification for this approach is that regions where the model is uncertain
indicate a decision boundary, and clarifying the position of decision boundaries is

the goal of learning classifiers.
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A key question is how to measure uncertainty. Different methods of measuring
uncertainty will lead to different variants of uncertainty sampling. We will look at two
such measures. As a convenient notation we use q to represent the trained model’s
predictions, with ¢. equal to the predicted probability of class c. One method is to

pick the example who’s prediction vector q displays the greatest Shannon entropy:

—>_4clogg.. (2.27)

Such a rule means ranking candidate examples in Algorithm 1 by Equation 2.27.
An alternative method picks the example with the smallest margin: the difference
between the largest two values in the vector q. In other words, if ¢, ¢’ are the two

most likely categories for observation x,, the margin is measured as follows:
M, = |P(c|x,) — P(c'|xn)]. (2.28)

In this case Algorithm 1, would rank examples by increasing values of margin, with
the smallest value at the top of the ranking.

The original definition of uncertainty sampling [45] describes the method in the
binary classification setting, where the two definitions of uncertainty are equivalent.
We are not aware of previous usages of minimum margin sampling active learning in
multiple category settings except when motivated as a variant of query by committee
(see Section 2.3.2).

Using uncertainty sampling, the computational cost of picking an example from
T candidates is: O(TDK) where D is the number of predictors, K is the number
of categories. In the evaluations we refer to the different uncertainty methods as

entropy and margin sampling.

2.3.2 Query by Committee

Query by committee (QBC) was proposed by Seung, Opper and Sompolinksy [64],
and then rejustified for the perceptron case by Freund et al. [27]. The method

assumes:
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e A noise-free (e.g. separable) classification task.
e A binary classifier with a Gibbs training [65] procedure.

Under these assumptions and a few others [27, 64] a procedure can be found that

guarantees exponential decay in the generalization error:
E, ~ e () (2.29)

where I(oco) denotes a limiting (in committee size) information gain and n is the
size of the training set. Compare Equation 2.29 to 1.1, to see the advantages of the
method.

A description of the query by committee algorithm follows. A committee of k
models M, are sampled from the version space over the existing training set us-
ing a Gibbs training procedure. The next training example is picked to minimize
the entropy of the distribution over the model parameter posteriors. In the case of
perceptron learning, this is achieved by selecting query points of prediction disagree-
ment. The method is repeated until enough training examples are found to reduce
error to an acceptable level.

Alas, the assumptions of the method are frequently broken, and in particular the
noise-free assumption does not apply to logistic regression on the data sets we intend
to use in the evaluations. The noise-free assumption is critical to QBC, since the
method depends on an ability to permanently discard a portion of version space (the
volume the parameters may occupy) with each query. Version space volume in the
noisy case is analogous to the D-optimality score, since a determinant is essentially
a volume measure. Generally the model variance, as measured through the D-
optimality score of linear and non-linear models, does not decrease exponentially in
the training set size even under optimal conditions.

The use of the query by committee method in situations where the assumptions do
not apply is an increasing trend with the modifications of Abe and Mamitsuka [1] and

McCallum and Nigam [51] who substitute bagging for the Gibbs training procedure.
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The term “query by bagging” (QBB) is becoming a catchphrase for algorithms that
take a bagging approach to implementing the query by committee procedure. Query
by bagging is implemented as follows. An ensemble of models ﬁ is formed from the
existing training set using the bagging procedure [9]. An observation is picked from
the pool that maximizes disagreement among the ensemble members. The procedure

is repeated until enough training examples are chosen.

As a modification to Algorithm 1, the following lines replace the original line
that produces a ranking. The general purpose active learning loop of Algorithm 1,

is augmented as follows:

Use bagging [9] to train B classifiers f;

Rank candidates by disagreement among the fz

The definition of disagreement is wide open and several methods have been pro-
posed. A margin-based disagreement method is to average the predictions of the fl
(normalizing to ensure a proper distribution), and using the margin computation of
Equation 2.28. We refer to this method as QBB-AM [1] (query by bagging followed

by author’s initials).

An alternative approach to measuring disagreement is to take the average pre-

diction (as above) and measure the average KL divergence from the average:

B ~ ~
> KLl favg) (2.30)
b=1

Larger values of average divergence indicate more disagreement, and so ranking
occurs from larger to smaller values in Algorithm 1. Following the convention of

using the author’s initials, we refer to this method as QBB-MN [51].

Under these two disagreement measures, query by bagging methods take only
slightly more computational time than certainty sampling methods: O(BTDK); the

cause of the difference is inclusion of the bag size B in the formula.
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2.3.3 Classifier Certainty

For logistic regression and other probabilistic classifiers, several researchers have

proposed minimizing the entropy of the algorithm’s predictions [46, 47, 60]':

CC=— Y Y P(clx,) logP(clx,) (2.31)

pcPool ¢

as a criteria for picking a training set. The sum is over the pool of unlabeled data and
the set of categories. In intuitive terms Equation 2.31 measures degree of certainty of
the individual classifications over the pool, and so we call the method the Classifier
Certainty (CC) method. In order to rank examples in Algorithm 1, an expected
value of CC is computed with respect to the current model P foreach candidate. The
expectation is over possible labelings of the candidate. A more detailed explanation

of the expectation procedure is given in Section 4.3 of Chapter 4.

Note however, that CC is not a proper loss function and minimization need not
lead to good accuracy; Equation 2.31 does not depend on the true probabilities P but
only the estimates P. For example, we often find ourselves certain of facts or beliefs
that are later found not be true. Restricting the search for examples to those that

makes us more certain of previously held beliefs can be a bad choice when learning.

Excluding the cost of model fitting, implementation of CC is at worst: O(TNK D),
where N is the number of observations from the pool used to compute the benefit of
adding an observation, D is the number of predictors, 7" is the number of candidates
evaluated for labeling, and K is the number of categories. An approximation that
saves computational time is Monte Carlo sampling from the pool to assess the benefit
of labeling. For example, in our evaluations, we sample 300 examples from the pool

to assess model improvement.

!Some readers familiar with the language modeling literature will be used to “prediction entropy”
as a measure of performance. However, in language modeling, it is actually a cross-entropy that is
measured, not prediction entropy for the reasons outlined below.
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2.3.4 Heuristic Generalizations and Variations

Uncertainty sampling and query by committee methods appear so general in their
implementation that it is tempting to port the methods to more complex problems
than the classification setting. Such has happened in the case of part of speech
tagging, where the query by committee methods are generalized to apply to hid-
den Markov models [20]. In parsing, uncertainty sampling [38] and other heuristic
approaches have been applied [70].

A recent trend in the pool-based active learning literature has been to take var-
ious approaches, usually uncertainty sampling or query by committee and try to
improve performance through additional heuristics. Such schemes include: obser-
vation similarity weighting [51], sampling from clusters [70], interleaving labeling
with EM [51], interleaving labeling with co-training [67], increasing diversity of en-
sembles [54], among others. These sorts of variations are so numerous that we are

unable to evaluate them here.

2.4 Challenges: Model Misspecification and Bro-
ken I.I.D. Assumptions

Model misspecification is the phenomenon where the data do not fit the assumptions
of the model. An example of misspecification is when the data are generated by a
neural network with many hidden units, but the model employed is linear. Objective
function methods, including the experimental design methods, are derived implicitly
assuming that the response variable is generated by the model. How much misspec-
ification may hurt the various active learning methods is unknown. MacKay [46]
and Cohn [14] have both looked at this question on specific data sets. We explore
this question in evaluations by controlling the noise level of the data sets. Yue and

Hickernall [74] tackled misspecification for linear regression models; this is the only
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work we know of that has focused on correcting the problem.

A separate problem with active learning methods is that most of the theory of
objective function approaches and intuitions of heuristic approaches rely on i.i.d.
assumptions of the training set. In the nonlinear A-optimality case, one particular
area of concern is the asymptotic approximation to variance, which relies on an
i.i.d. assumption. A proper specification of the problem and its consequences are an

interesting challenge.

2.5 Active Learning Evaluation Methodology

The largest evaluations of active learning have been conducted using decision trees
and variants of query by committee [1, 54] on UCI machine learning repository
data [8]. Document classification [51] and other natural language processing domains
are areas under frequent investigation [3, 20, 38, 70]. Evaluations typically try to
show increased performance relative to the random baseline. Proof of enhanced
performance can take the form of showing how many more examples are necessary
to obtain a certain performance or demonstrating superior performance at a fixed
training set size.

Learning curves such as Figure 2.1 demonstrate performance for different training
set, sizes, but have the disadvantage of taking up so much space that comparing
across different data sets using multiple competing methods can be cumbersome. An
alternative approach of reporting results is tabular form where results are reported
after training on some fixed number of observations, such as 300.

There are several variables of an evaluation that must be decided. How many
random examples do we assume are labeled before active learning will begin? Should
we use use a purely active learning approach to sampling (as performed in [51, 60])
or mix active learning with random sampling (e.g. [3]). Also, some evaluations

choose to sample more than one point at a time before re-training for computational
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Figure 2.1: Learning curve plotting classification accuracy against size of training
set. The red points forming a horizontal line represent the accuracy from training
on the entire pool of data.
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expediency [54]. Our experience is that different choices for each of these variables
may lead to different conclusions about performance and robustness of a method.
One of our goals is to isolate the effects of different decisions. Chapter 6 focuses on

this issue.

2.6 Summary

This chapter gave a tour of active learning serving the purposes of conveying a
sense of the breadth of previously developed methods while spelling out the details
of particular methods we will evaluate in Chapters 5 and 6. We maintained a
degree of chronological accuracy; the experimental design methods were proposed as
a method for active learning before most of the heuristic methods, and well before
the heuristic methods caught on. Experimental design now seems to be unknown to
much of the machine learning community due to the recent emphasis on heuristic
methods and the recent entry of most members of the active learning community.
It has been unknown until now how well experimental design methods work on

naturally occurring data.

26



Chapter 3

The Logistic Regression Classifier

In this chapter, we introduce the logistic regression classifier and state its mathe-
matical and statistical properties. We present the logistic regression model as the
intersection of various diverse frameworks including: generalized linear models, max-
imum entropy classifiers, the exponential family of distributions, and the conditional
random field model. We detail both the commonalities and the distinctions between
logistic regression and these other frameworks. Understanding the place of logis-
tic regression in the scheme of other widely used models will prove useful to those
who would like to explore the active learning techniques of this dissertation in wider

contexts.

3.1 Logistic Regression: A Bernoulli Probability
Model

In describing logistic regression [37], we begin with a definition of the logistic func-

tion:



Figure 3.1: Plot of the logistic function for different values of 6.

The logistic function is a continuous increasing function mapping € into the interval
(0,1). Figure 3.1 illustrates the logistic function mappings for a range of input values.
We can see that at € =0, o(€) = 0.5. As 0 increases the function output approaches
1, and as 6 decreases (e.g. larger in magnitude, yet negative), the output approaches
0. Therefore, the function is suitable for representing the probability of a Bernoulli
trial outcome.

Given a set of predictors, x,,, we wish to determine the probability of a binary

outcome y,. We define a probability model:
PY,=1x,) = o(w-xy,) (3.2)
with corresponding likelihood function:

P(y[x,,m=1...N) = J]o(w-x,)"(1 - o(w-x,))t¥ (3.3)

n

= J[o(w-x,)"o(—w-x,)d ). (3.4)

Equation 3.3 has a Bernoulli distribution form. A useful variant for scientific and
sociology experiments employs a binomial [6] rather than Bernoulli formulation to

facilitate repeated trials.
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3.2 Multinomial Probability Model

When the number of outcome categories exceeds two, the situation is a little more
complex; the outcome variables Y,, take on one of three or more discrete outcomes
rather than a 0 or a 1. We define a probability model as follows:

exp(We - Xp)

Soexp(we - xp,)

P(Y, = clz,) = 7(c, xp, W) = (3.5)

The parameter vector w of the binary logistic model is augmented by a set of vectors

w,.: one for each category. The resulting likelihood is:
P(ylxo,n=1...N) = []n(c, x5, w)¥ . (3.6)

The multinomial model is a generalization of the binary case as can be seen by

defining wy = 0 and w; = w in which case:

U= 1) = o Lt o

exp(w - x,,)

1+ exp(w - x,) (38)

1
e — (3.9)
= o(w-xp,). (3.10)

3.3 Relationship to the Exponential Family of Dis-
tributions
A distribution is a member of the exponential family if it may be written [6]:
P(ai6) = hie) e Y O)T () = BO) @11

where 6 is a vector of parameters, z is an observation, and 7}(z) are real-valued
functions [6]. The logistic regression model may be written in this way by parti-

tioning the parameters into blocks using an index over categories: 7(f).; (encoding
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parameters for category ¢, predictor j), and rewriting the function as a conditional

probability:
k
P(Ya =clxq;0) = h(z)exp[d_n(0)eTe(ync) — B(9)] (3.12)
J
and defining:
0., = w. where w comes from (3.5) (3.13)
n(@)cj = WeTy (314)
1 ify=c
Tyly) = (3.15)
0 otherwise
B#) = log)_exp(n(d) - x) (3.16)
h(z) = 1. (3.17)

The use of the predictors x in the function B requires some very mild restrictions on
the distribution being modeled in order for (3.12-3.17) to be considered a member

of the exponential family (see [6, Section 6.5] for details).

3.4 Relationship to Generalized Linear Models

Generalized linear models [53] are probability models that can be factored into an

exponential family form:
PY =y;X=x,m7) = explny— A(n)|h(y) where (3.18)

n = h(x,w) (3.19)

The function A(-,-) factors the model into a different set of parameters w. The

appropriate choice of the functions A(-,-) and A(-) reproduces logistic regression:

h(x,w) = w-x (3.20)
hly) = 1 (3.21)
A(m) = log(l+exp(w-x)). (3.22)
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The case where the number of categories exceeds two can be factored into a multi
parameter exponential family with A function of the form of 3.19. A more formal
exposition of the generalized linear model exposition is given in [6, 53]. The key
advantage of viewing models this way is the ability to substitute different choices of
h within a common framework. Standard choices exist for Bernoulli (e.g. logistic
regression), Poisson, normal, and gamma distributions among others. In the normal

case, standard linear regression emerges.

3.5 Relationship to Maximum Entropy Classifiers

Another way to parameterize a classification probability is:

exp[Y; Aifi(x, c)]
e exp[y; Aifi(x, )]

P(Y = clx) (3.23)

The functions f are referred to as feature functions. Solving for the parameters A
using maximum likelihood techniques unveils the maximum entropy model which is
frequently used in natural language processing tasks [5, 59, 57]. Usually the classifier
is motivated by a desire to make the prediction probabilities highly entropic subject
to constraints of matching empirical qualities of the training set (see [5]). Such
motivation is the source of the name “maximum entropy model.” For our purposes,
maximum entropy motivations are distracting and we [35] view the model as a mere
parameterization of the distribution over categories.

Logistic regression may be encoded within the maximum entropy model as fol-

lows:

Tn,i Wwhen d =c
! nj
fej(Xn, ) = (3.25)
0 otherwise

The parameters A and feature functions f doubly index in the new formulation.
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Putting these pieces together we have:

B _exp[Xe Acife(%,Y)]
P(Y B y|X) N Zc’ eXp[Zci )‘cifci(xa Cl)] (326)

exp[w, - x|
> exp[we - x|

(3.27)

In contrast, there are maximum entropy distributions that cannot be represented
with a logistic regression model. For instance, consider the following three-category
(a, b, ¢) model with feature function f,, in addition to features taking the form of

Equation 3.25. Feature function f,, is defined as follows:

Tn; When y, =aorb

fm(Xn: C) = (328)

0 otherwise

The parameter \; is active in the numerator for P(Y = a|z) and P(Y = b|z). The
logistic regression parameterization (3.5) does not permit such tying together of
parameters to multiple categories. The vast majority of published accounts of the
maximum entropy classifier do not use such non-trivial features as Equation 3.28,
and it is safe to refer to such applications of the model as logistic regression.

In the binary classification setting, such pathologies involving special parameters
do not occur; parameters tied to both categories in binary settings can be factored
away from both numerator and denominator of Equation 3.5. Thus, maximum en-

tropy classifiers for binary tasks can always be encoded in logistic regression.

3.6 Relationship to Conditional Random Field Mod-
els

Markov random field (MRF) models (see [28, 42] for tutorials) define a probability
distribution while representing the statistical dependency structure using a graph,
denoted G. The nodes on the graph represent variables X*. We use the superscript

notation to bring attention to the fact that the is refer to different variables, whereas
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subscripts refer to indices for separate observations. An MRF defines a local Markov

property:
P(X'=2/X\{X}) = P(X'=2n). (3.29)

Equation 3.29 says that the probability distribution governing X* conditioned all
other variables with the exception of X' is equal to the distribution of X? conditioned
on its neighbors (denoted n*).

As long as the joint distribution over X is strictly positive, the distribution may

be factored into the cliques ¢; of G [36]:

P(X=x) — exp (Z;Zczf(%))) . (3.30)

The functions ¢ are called clique potentials, while the function Z is a normalizing
constant ensuring [y P(x)dx = 1.

The problem of modeling the the joint distribution of variables Y given a set
of variables X, where Y and X are a partition of the original set of variables of
Equation 3.30, is similarly decomposed according to the Hammersley-Clifford theo-
rem [36]:

eXp(ZqEC(Y) ¢Q(y’ 33))
Z(C(Y))

PY=yX=x) = (3.31)

where C(Y) denotes the cliques that include graph vertices Y.

Lafferty et al. [44] propose a conditional random field model as a general frame-
work for more directly modeling the variables of interest (the Y) rather than model-
ing both X and Y as is usually the case using hidden Markov models and Bayesian
belief networks. Tasks where the conditional model has been used to replace joint
models include: sequence models for part of speech tagging [44], NP chunking [66],
and information extraction [43] among others, and the list is growing rapidly. When

the graph C'is a tree, the conditional distribution may be re-written:

eXp[ZeEE,k )‘kfk (6, Y‘ea X) + ZveV,j ,U']g] (Ua Y‘va X)]
Z (1, A, X)

P(ylx) = (3.32)

33



which is the presentation of Lafferty et al. [44]. The variables F and V' continue
to denote the edges and vertices of a graph, ;4 and A\ are parameter vectors, and the
notation y|s; are components of the graph y with vertices in subgraph s.

Equation 3.32 can be refactored [66]:

exp[)\ ) F(y’ X)]
Z(x)

P(y|x) (3.33)

taking on a form quite similar to the maximum entropy model (Equation 3.23). It
is evident from the forms of Equations 3.32 and 3.33 that the conditional random
field framework generalizes the maximum entropy classifier, and therefore logistic

regression as well.

3.7 Parameter Estimation for Logistic Regression

Analysis of the Hessian of the logistic regression log likelihood function reveals the
model is convex in the parameters. Any number of standard convex optimization
procedures including gradient, conjugate gradient, and Broyden, Fletcher, Goldfarb,
and Shanno (BFGS) methods suffice (see [58] for a description of these algorithms).
When the predictors are all positive (z,; > 0), generalized iterative scaling and
variants [5, 21, 40] work as well. Iterative scaling procedures have the advantage
that they are extremely simple to implement. Methods that take second order in-
formation into account such as conjugate gradient and BFGS are known to converge
quicker than generalized iterative scaling (GIS) and improved iterative scaling (IIS)
in maximum entropy modeling [49].

An important characteristic of the parameters of logistic regression are the exis-
tence and consistency of the maximum likelihood parameters. It can be shown for

logistic regression parameters w and estimates w that:

L(/n(w—-w)) — N(0,F ' (w)) and (3.34)
Vo = W+ op(ﬁ). (3.35)
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F refers to the Fisher information matrix. The £ in this notion refers to the dis-
tribution that its argument follows, w,, and W, refer to estimate based on a sample
and expected estimate of w respectively. F(w) is the Fisher information matrix of
the model, described in Chapter 4. The O, notation refers to a rate of convergence
in probability. The requisite theory for demonstrating Equations 3.34 and 3.35 is
beyond the scope of this exposition, and we refer the reader to [6, Sections 6.2 and
6.5] for an account. We use Equations 3.34 and 3.35 in Chapter 4 in deriving an

asymptotically correct estimate of variance.

3.8 Summary

The logistic regression model is used under a variety of names in a variety of contexts.
This is a sign of the usefulness and flexibility of the model. We take the view that
such an elaborate probabilistic model is best understand in its commonalities and
distinctions with other well-known models. The benefits of this view are tangible
for the research contained within this dissertation. From the Statistics literature we
glean useful results from the study of the parameter estimates of logistic regression.
The popularity of the maximum entropy classifier has inspired much empirical work
in evaluating different optimization procedures, and our implementation [52] exploits
this knowledge. From the Markov random field literature we see generalizations
for modeling dependent variables, providing the promise of future work in active

learning.
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Chapter 4

Loss Function Active Learning for

Logistic Regression

In this chapter we explore a methodology for employing a large set of loss functions
in active learning of the logistic regression classifier. The techniques are motivated
by experimental design, but have not been used in active learning of the logistic
regression classifier. What makes these loss functions appealing is the that they
define an explicit criterion for labeling examples. For that reason, we detail their
derivation in depth. Our derivations are for arbitrary numbers of categories. In the
binary classification setting, many of the formula simplify, and we detail the results
for the binary setting in Appendix A. The chapter concludes with discussion of some

of the recent analysis of bias and variance and their role in 0/1 loss minimization.

4.1 A Squared Error Decomposition for Proba-
bilistic Classification

Squared error is a loss function more often associated with regression rather than
classifier settings. However, the loss is still applicable to classifiers and we exploit

its analytical properties here. Let’s begin by explaining a well-known decomposition
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Table 4.1: Notation used in the decomposition of squared error.
E Expectation with respect to actual distribution governing (x, y)
Expectation with respect to training sets of size s. The s variable

is often left implicit.
Model’s probability of ¢ given z. Parameter vector w is determined

m(c,z,%; D) by a training set D. The variables W or D are frequently dropped

in the notation for this reason. ) _ )
7(c, x,w) Model’s probability of ¢ given z using arbitrary weight vector w.

of squared error into a term that is training set independent as well as a training set

dependent term:

> E[(l. — 7(e,x; D))*[x,D] = Y E[(1l.— E[c|x])’[x,D] “noise”  (4.1)

+ D _(m(e,x;D) — E[c[x])?

c

The left hand side is the squared error for a single observation (x,y); the variable 1,
is an indicator function taking on the value 1 when the observation has label ¢, and
0 otherwise. The expectation E is with respect to the true distribution producing
(y, x).

A further expectation with respect to the distribution generating (x,y) gives the
expected loss over a test set. However we hold x constant to simplify the notation
for the time being. The variable D represents a training set distribution, for our
purposes a multiset of s observations (z,y) sampled from the underlying distribution
governing (x,y). The first term of the decomposition (4.1) named “noise” represents
error that is training set independent: the expectation is conditioned on the training
set D. Another interpretation of the first term is the portion of error due to the
actual distribution of categories conditioned on the predictors x is used in making

predictions.

In contrast, the second term of the decomposition depends on the particular
training set since no conditioning on D occurs. A sensible analysis on the second

term is to consider the expectation with respect to alternative training sets D. Taking
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such an expectation we obtain the mean squared error (MSE) of the model:
MSE = } Ep|(r(c,x; D) — E[c|x])’]. (4.2)
The MSE decomposes as follows:
MSE = Y (Ep[n(c,x;D)] — E[c|x])* “squared bias” (4.3)
+ zc: Ep[(m(c,x; D) — Ep[r(c,x; D)])?]. “variance”

The bias term captures the difference between the expected model Ep7(c, x; D) (the
expected model from a fixed size sample) and the distribution that actually generates
y from z. The variance term captures the variability of the model under resampling
data sets of fixed size, represented by Ep.

The notation can capture training sets of differing size using the variable s thusly:
D, in which case it is useful to consider the limiting behavior of variance and squared

bias as the training set size grows. Variance is then:
zsllrgo Ep, [(W(c, x; D) — lim Ep, [7(c,x;D,)])?| = O. (4.4)

The variance of the model disappears as the training set grows. This is a consequence
of the consistency of the parameter estimates of the model [6].

For the squared bias term we have:

) [lim Ep.[r(c.x: D) — Elcix]] > o. (4.5)

5500
When equality holds for the limiting bias term, we say the model is consistent.
In general modeling problems involving real world data, logistic regression is not
consistent. This is true, for instance, when the appropriate predictors are missing.
In other situations, all necessary predictors are available, but the probability model
governing y given x is not in the class of distributions that logistic regression can
encode.

We define several terms to denote the limiting error of the model:
2

Residual Bias = > [lim Ep,[7(c,x; D)] — Elc|x]| . (4.6)

§—00
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and

Residual Error = Y~ E[(1. — E[c[x])’|x, D] + Residual Bias (4.7)

= Noise + Residual Bias. (4.8)

This last term consists of the training set-independent error of Equation 4.1 and the
portion of bias that is training set size independent. For now, we define our goal in
learning as minimizing squared error. From the various decompositions we see that
this is equivalent to minimizing MSE, and thus both bias and variance. To achieve
our goals, we may focus on decreasing bias, variance or both simultaneously. While
estimation of bias may be possible, for instance following [15], we leave this subject
for future work, and focus on estimation of variance and its consequences for active

learning.

4.2 A Variance Estimating Technique

The decomposition (4.3) suggests that minimization of the variance portion of MSE,
will decrease MSE. Fortunately, statistical theory governing prediction variance pro-
vides a convenient mechanism for estimating variance over a pool of unlabeled data
points. Minimization of this variance is known in the field of optimal design of exper-
iments as A-optimality [11]. We derive the requisite theory for multinomial logistic
regression below.

Taking two terms of a Taylor expansion of 7(c, x, w; D):

m(c,x,w; D) = 7(e,x,w) (4.9)

+ (o) —w) +0<%),

where w and w are the expected (with respect to D of fixed size) and current
estimates of the parameters, and s is once again the size of the training set. The D

parameter disappears from the first term since w is a free parameter in this setting
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rather than something determined by a training set D, in contrast to W in previous
equations.

The gradient vector g(c) indexed by category/predictor pairs (¢, %) is defined as

follows:
© = o—nlexw (4.10)
wilc) = (e, x, w :
g awc’i
m(e,x,w)(l —7(c,x,w))x; ¢c==c

[ rexwi-nexw) )

—m(c,x, w)m(c,x, wW)z; otherwise.

In computing the variance of the Taylor approximation (4.9) we have:

Var[r(c,x,w)] =~ Varg,(c)(W.— w,)] (4.12)
= g(c)'F'glc) (4.13)

The asymptotics in (4.9) and the variance calculation of Equation 4.12 follow from

normality of the maximum likelihood estimate:
w ~ N(w,F). (4.14)

F is the Fisher information matrix with dimensions (k- d) x (k- d) defined as follows:

27 (c, x, w)m(=e, x, W) + é c=candi=3j
Fleiye )= Exy~p § zizjm(c,x, w)m(=c, x, W) c=c and i #j (4.15)
zizjm(c, x, w)mw(d, x, w) c#c.
One final bit of algebra allows more efficient computation of the variance. Define
Ane) = g,(c)g,(c), A, = Y. Ap(c) and A = Y, Ay, where n indexes individual

observations in the pool. The variance approximation may be represented thusly:

> IZVar[fr(C\Xn)] ~ Zgn )'F g, (c) (4.16)
nePool ¢
= Y tr{g.(0)g.(c)F '} (4.17)

= Y tr{Au(c)F} (4.18)
= tr{AF'} (4.19)
= §(D,A) (4.20)



Using the variance estimated over the pool is intended to give an estimate of variance
over the actual distribution of observations. As the pool size increases this is a
reasonable assumption.

Equation 4.19 is the A-optimality objective function for multinomial regression
with the A matrix that gives the method its name. We might have chosen to notate
the A matrix A(w) in order to make explicit the dependence of the matrix on the
parameters. We use instead the ¢(D, A) notation to show the dependency of the
criterion on the training set (D) as well as the data set used to estimate variance
(the pool-encoded in the A matrix). We refer to the method as variance reduction
active learning, noting that the greedy method we will employ in picking examples
will not lead to optimal solutions.

The technique of A-optimality for logistic regression has been developed pre-
viously [11, 22| in the context of designing location/scale two parameter logistic
regression experiments. Such two-parameter experiments are useful for determining
the dosage of a compound that leads to an outcome ( e.g.  death in an animal
subject) at some probability, for instance 50% of the time. We are not aware of any
previous use of the method in logistic regression models with more than two param-
eters or more than two categories. Nor are we aware of evaluations of the method in

pool-based active learning of logistic regression.

4.3 How to Pick the Next Example

Equation (4.19) shows how to compute the expected variance of a labeled training
set. We now need to derive a quantity that describes the expected benefit of label-
ing a new observation. The training set D consists of a sequence of observations:
{(a:n,yn)HV Using the current estimated model 7(y, x, W), the expected benefit of

labeling observation x is:

E[Loss] = m(co,x,W)p(DU (x,¢0),A)
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+ : (4.21)

+ 7r(cka X, VAV)¢(D U (X, ck:)a A)

Ignoring model-fitting, the worst-case computational cost associated with picking
a new example is:! O(TNK?(K + D?) + TK3D3), where N is the number of pool
examples used to create the A matrix, 7" is the number of candidates evaluated for
inclusion in the training set, K is the number of categories and D are the number of
predictors in the model. The N term may be reduced using Monte Carlo sampling
from the pool. The term TN K?(K + D?) corresponds to creation of the A matrix,
while the term T K3D? corresponds to inversion and multiplication by the F' matrix.
Model training can be safely ignored from such analysis when the training set size

is small relative to pool size, as is the case in the evaluations of this dissertation.

4.4 A Generalization to Many Common Loss Func-
tions

Minimizing variance (4.3) is equivalent to minimizing squared loss:

L(p,q) = Y (pe — 4.)%, (4.22)

c

with vectors p and q defined with components p. = Ep|[7(c,x,, W;D)] and ¢, =
7(¢, X,, W; D). The natural next step is to develop a technique applicable to other loss
functions for these values of p and q. Many common loss functions, including both
squared and log loss, have the convenient property that they are twice differentiable
and the second term of their Taylor approximation disappears. The first three terms

of a Taylor expansion of this class of loss functions produces an approximation:

Lp,q) ~ L(p,p)+0+ (p—q) {%%L(p,q)lq—p} (p—a).

(4.23)

'We assume naive implementations for the matrix calculations in this analysis.
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Now, taking the expectation with respect to the training sets of size D (Ep) we

have:

EolLip.a] = Loop) + 4Eolle - @) { i lpalap | (0l (420

In the special case of squared loss L(p,q) = > .(pc — ¢c)?, the approximation is

exact, and the variance minimization criteria (4.19) emerges:

Ep[L(p,q)] = ) Varlg], where (4.25)

Varle] = Ep[(g — Eple])’]. (4.26)

Unfortunately, not all loss functions are amenable to this analysis. For example,

0/1 loss is not differentiable. Further discussion of this technique can be found in [10].

4.5 A Log Loss Method of Active Learning
Applying the Taylor expansion method to log loss we find:

1
L(p, q) = - ch logpc +0+ Z %Var[QC]' (427)

The first term is a constant with respect to training set inputs. The third term is
identical to the variance reduction criteria 4.19, but with the A matrix reweighted
by a factor of i. Furthermore, the computational cost of implementing the log loss
procedure remains identical to that of variance reduction.

As a reminder, the procedure estimates a log loss based on the expected value

over training sets of fixed size Ep:

L(p,a) = 3 Enln(e,xn,w; D)]log (m(c, Xn, w; D)) (4.28)

rather than the correct probability distribution generating categories ¢ given predic-

tors x:

L(p,a) = > E[yz]log (n(c,xn, W;D)). (4.29)
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4.6 Applicability of the Approach to Conditional

Exponential Models

The method of estimating variance relied on the ability to perform an approximation
by means of Taylor series, compute the variance of the second term, and showing
that the higher order terms vanish. What of the maximum entropy classifier (Sec-
tion 3.5) and conditional random field models (Section 3.6)7 We expect that the
variance estimation technique will generalize to these more general forms of con-
ditional exponential models. Demonstrating this result is beyond the scope of the

present work.

4.7 What is the Relevance of the Mean Squared

Error Decomposition in Classification Settings?

Over the last decade, researchers have speculated about how evidently biased ma-
chine learning methods such as naive Bayes, k nearest neighbors and decision trees
can outperform less biased counterparts such as logistic regression and support vec-
tor machines on classification tasks using 0/1 loss (or equivalently, one minus the
classification accuracy). The bias/variance trade-off noted in nonparametric statis-
tics [33] naturally comes to mind when discussing bias and variance, and seems to

be relevant to the discussion.

4.7.1 On the Bias and Variance of Logistic Regression

We start with a comparison of logistic regression to backpropagation neural net-
works [7]. The tension between bias and variance in neural networks is described in
Geman et al. [33] who view neural networks as a non-parametric technique capable

of approximating most reasonable functions. The number of hidden units determines
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the set of realizable functions the network can approximate, and therefore controls
a trade-off between bias and variance. The usefulness of this insight depends on the
ability to find good solutions to the error minimization problem for any number of

hidden units.

Logistic regression is similar to a backpropagation neural network without any
hidden units, what Geman et al. considers a residually biased model (see Equa-
tion 4.6) for regression problems. In contrast, researchers working on classifica-
tion tasks would consider logistic regression an unbiased model compared to naive
Bayes [30]. Evidently, calling something “biased” is a matter of some interpretation

and perspective.

In this thesis, we consider only one variant of probabilistic modeling called logistic
regression and it is defined in Chapter 3. There is no bias/variance dilemma explored
here as a consequence of a tunable parameter as in the neural network case; only a

single point on an imaginary curve encoding log linear probability models.

4.7.2 Bias and Signed Variance in 0/1 Loss

Some researchers, have noted that the effect of bias in 0/1 loss is only germane
to the extent that it changes the position of an observation relative to a decision
boundary [30]. When bias is bad (an observation is incorrectly classified on aver-
age), decreased variance makes matters worse while increased variance can decrease
loss. When bias is good (an observation is correctly classified on average), decreased
variance helps matters, and increased variance hurts. Such insights have lead to
redefinitions of bias and variance applicable to the 0/1 loss [23, 30]. In these de-
compositions variance either contains a sign (positive/negative) or a signed constant

multiplier.

The most salient insight of these investigations into 0/1 loss is that more accu-

rate probabilities as measured by mean squared error need not translate into lower

45



classification error as measured by 0/1 loss. Similarly, lower 0/1 loss need not trans-
late into superior mean squared error of the probability estimates. Naive Bayes and
logistic regression are frequently used to make this point; naive Bayes often provides
better classification accuracy than logistic regression despite having inferior proba-
bility estimates. These results provide evidence that the right kind of constraints
on a model can offset the effects of higher residual bias. As a consequence these
investigations into 0/1 loss, a variance minimization technique could theoretically
hurt classification accuracies in the presence of harmful biases. We will examine this
possibility in the empirical investigations.

Having the right kind of bias might not be the only reason for the success of
methods like naive Bayes over logistic regression. Ng and Jordan [56] argue that
faster learning rates inherent to certain types of hypothesis space restrictions account
for the difference in performance despite the higher expected residual bias of naive
Bayes. They show empirically on a fifteen data set evaluation that logistic regression
usually matches or outperforms naive Bayes accuracy as training set sizes get larger.
In effect, the Ng and Jordan results indicate a bias/learning rate dilemma operating
in tandem to the more widely-understood bias/variance dilemma. The learning rate
would also play a role in determining superior 0/1 loss among different learning

algorithms.

4.8 Summary

This chapter presents a general approach to performing loss based active learning.
Key to the approach is the normality and rate of convergence of the parameter
estimates. The strategy is general to loss functions, provided they are twice differ-
entiable and the second term of their Taylor series disappears. Such is the case with
squared and log loss. The primary assumption of the methodology is that decrease

in prediction variance will lead to a decrease in classification error for a fixed logistic
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regression model. This is an assumption that must be tested empirically.
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Chapter 5

Primary Evaluation: Loss
Function Methods and Heuristic

Alternatives

5.1 Evaluation Goal

The evaluations in this dissertation have specific goals: to discover which methods
work in addition to why methods perform badly when they do. A treatment of active
learning for logistic regression must explore many of the prevalent methods, but this
dissertation focuses particularly in developing a theory of loss functions for use in
active learning. Inevitably, the evaluations must assess whether the benefits of loss
function methods exist. Towards this end, we assembled a suite of machine learning
data sets consisting of a diverse number of predictors, categories and domains. In
this chapter, we describe our evaluation methodology, present the most salient of
our results and interpret their meaning.

Necessarily, evaluation of the loss function methods require setting the parameters
of evaluation in a way to make loss function strategies computationally tractable.

It follows that the heuristics should be evaluated with the same parameter settings
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when /if applicable. Surprisingly, the evaluation of heuristic methods of this chapter
revealed many negative results. Chapter 6 treats alternative evaluation parameter
settings for the heuristic methods. In this manner the dissertation explores the
possibility that negative results for heuristic methods are a by-product of specific
evaluation design parameters rather than fundamental problems with the heuristic

strategies.

5.2 Active Learning Methods and Method-Specific

Parameter Settings

The evaluations consist of seven different methods of pool-based active learning in
addition to “two straw men:” random sampling from the pool as well as random
sampling combined with the bagging procedure. The active learning methods tested
include: variance reduction (Equation 4.19), log loss reduction (Equation 4.27),
minimum margin sampling and maximum entropy sampling (Section 2.3.1), QBB-

MN and QBB-AM (Section 2.3.2), and classifier certainty (CC) (Section 2.31).

Several of the active learning methods require method-specific parameter settings.
For example, the variance reduction, log loss reduction and CC methods require a
random sample from the pool of some predetermined size to assess expected benefit
of example labeling. In the case of variance reduction and log loss reduction the
random sample composes the A matrix. All evaluations employ a sample size of 300

for assessing benefit of labeling.

The QBB methods, QBB-MN and QBB-AM rely on bagging, and so the evalua-
tion requires a bag size setting. Following [51], the bag size is 3. Chapter 6 explores

sensitivity of the results to the choice of 3.
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Table 5.1: Descriptions of the data sets used in the evaluation. Included are counts
of: the number of categories (Classes), the number of observations (Obs), the test set
size after splitting the data set into pool/test sets (Test), the number of predictors
(Pred), the number of observations in the majority category (Maj), and the training
set stopping point for the evaluation (Stop).

Data Set ‘ Classes Obs  Test Pred Maj Stop

Art 20 20,000 10,000 5 3635 300
ArtNoisy 20 20,000 10,000 5 3047 300
ArtConf 20 20,000 10,000 5 3161 120
Comp2a 2 1989 1000 6191 997 150
Comp2b 2 2000 1000 8617 1000 150
LetterDB 26 20,000 5000 16 813 300
NewsGroups 20 18,808 5000 16,400 997 300
OptDigits 10 5620 1000 64 1611 300
TIMIT 20 10,080 2000 12 1239 300
WebKB 4 4199 1000 7543 1641 300

5.3 Evaluation Data Sets and Data Set-Specific
Evaluation Parameters

We tested these seven active learning methods on ten data sets (see Table 5.1 for
summary of data sets). From the UCI machine learning repository of data sets [8] we
used LetterDB [29] and OptDigits [41]. We used the TIMIT database [32] to make
predictions in a voice recognition domain. Web pages from the WebKB database [18]
provided a document classification task. For additional document classification tasks
we took the 20 NewsGroups topic disambiguation task [55, 57|, along with two
data sets made from different subsets of the NewsGroups categories. We used three

artificial data sets to explore the effects of adding different types of noise to data.

5.3.1 Data Set Evaluation Parameters

Several parameters of the evaluation are intrinsic to the data sets. For instance,

how many random examples should serve as a “seed” set before any active learning
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begins? This chapter presents results for seed size 20. Results from starting training
at 50, 100, 200 are available on request. Chapter 6 considers even larger starting seed
sizes.

Another choice is the stopping point for the evaluation. The evaluation uses
300 as a stopping point except when there is good reason not to. Smaller stopping
points are used for three (of ten) data sets: ArtConf, Comp2a, and Comp2b, and
the sections on processing of the individual data sets present the reasons for these
decisions. A summary of the actual stopping points is included in Table 5.1.

The test set size for each data set is another tunable parameter. The data set is
split into a pool and test set as part of a 10 fold cross validation. In other words this
splitting occurs 10 times with ten results averaged into a final accuracy. Table 5.1
shows test set sizes used for different data sets. What is important to the qualitative
results of this and subsequent chapters is that both the pool and test set are quite

large, facilitating hypothesis testing on the averaged results.

5.3.2 Natural Data Sets

Seven of the evaluation data sets are “natural,” that is they come from some real
world domain rather than an artificial stochastic generation engine. The data sets
are: LetterDB, OptDigits, TIMIT, NewsGroups, Comp2a, Comp2b, and WebKB.
The paragraphs below describe the sources and pre-processing steps for each of these
natural data sets.

The LetterDB database consists of 20,000 instances of uppercase capital letters
in a variety of fonts and distortions. The predictors are 16 numerical attributes
computed from statistical moments and edge counts. LetterDB was the most com-
putationally intensive data set we attempted loss-based active learning on, and eval-
uations employing seed size 20 took approximately three weeks to run to completion
using ten machines (each machine ran one tenth of the ten-fold cross-validation).

The OptDigits data set consists of 5620 examples of handwritten digits from 43
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people. The predictors consist of counts of the number of “on bits” in each of 64
regions.

We processed the WebKB and NewsGroups data set by running a stopword list
and using a count cutoff of 5 or fewer documents. Numbers were converted to a
generic NV token. The Comp2a data set consists of the comp.os.ms-windows.misc
and comp.sys.ibm.pc.hardware subset of NewsGroups used previously in an ac-
tive learning evaluation [60]. The Comp2b data set consists of comp.graphics and
comp.windows.x categories from the same study. We employed a count cut-off of 2
or fewer documents to trim down the vocabulary for these two binary-category data
sets.

Of the four document classification problems only the two binary classification
problems proved feasible to test the objective function approaches due to compu-
tational limitations. Implementation tricks included elimination of non-occurring
token counts from the matrix computations of the loss function methods in addition
to application of the Sherman-Morrison formula. Due to computational time costs
of the loss function methods, we stopped training after 150 examples for these two
document data sets.

The TIMIT database was formatted into 10,080 points consisting of the first
12 Bark-scale PLP coefficients (excluding coefficient 0, which usually hurts perfor-
mance). The points represent the male speakers from dialect regions 1 through 3.

The goal is to predict which of 20 different vowel sounds are uttered.

5.3.3 Artificial Data Sets

We constructed three artificial data sets to explore the effects of two different types of
noise on the modeling performance. The first type of noise is the prediction residual
error (Equation 4.8). As a reminder, this is the portion of squared error that is
independent of training set size. The residual error may be estimated when the

training set is sufficiently large that the mean squared error (Equation 4.2) becomes
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NewsGroups Clustered Confusion Matrix

rec.sport.hockey

rec.autos

rec.motorcycles
comp.graphics
comp.windows.x
comp.sys.ibm.pc.hardware
comp.os.ms—windows.misc
comp.sys.mac.hardware
misc.forsale

sci.electronics
talk.religion.misc
alt.atheism
soc.religion.christian
talk.politics.misc
talk.politics.guns
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talk.politics.mideast
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Figure 5.1: Clusters of topics based on distance measured on confusion matrix rows.
The confusion matrix was computed in this case after training on the entire pool
and averaging over 10 pool/test splits.
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negligible.

We explore the effects of increased residual error using two similar artificial data
sets. The first, named Art, consists of 20 categories and 5 predictors with observa-
tions generated according to: x, ~ N(0,I) and w. ~ N (0,57). The second data
set, ArtNoisy, is generated similarly except the probabilities are formed by adding
a noise term to the dot product calculation of Equation 3.5: w, - x,, + G, where
Gne ~ N(0,10). Thus, ArtConf models the presence of unknown features that influ-
ence the true probabilities of an outcome: a form of noise that will increase residual

error.

A second type of noise involves different levels of confusion among the categories.
For instance, when categories are related by clusters, we would expect members of
the same cluster to be more difficult to disambiguate than two categories in different
clusters. The NewsGroups data set is an example of a data set with intrinsic category
clusters as can be seen in the list of topics (Table 5.5) or by clustering the rows of a

confusion matrix (Figure 5.1).

One hypothesis we would like to explore is that heuristics that sample uncertain
regions should fall prey to intrinsically uncertain regions that have little teaching
value. We generate a third data set, ArtConf, consisting of two regions of predictor
space and 20 categories in order to test our ability to construct intrinsically confus-
able regions. In the first region, predictor no. 1 is set to 1, all remaining 5 predictors
are set to 0 and categories 0 or 1 are assigned with equal probability. Region 1 is
the intrinsically uncertain region, and 33% of the observations inhabit this space. In
region 2, predictor no. 1 is set to 0, and the remaining 18 categories generate the
remaining 5 predictors according to a multinomial naive Bayes model [51]. In other
words, categories 1 and 2 are intrinsically hard to disambiguate, but the remaining

categories are relatively easy to predict.

The ArtConf data set has the property that learning the generation function takes

relatively few examples. This is a byproduct of the simplistic generation process. As
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a result, tangible learning improvement disappears by 150 examples. Hypothesis
testing results, box plots and means are reported at a stopping point of 120 obser-

vations for this reason.

5.4 Evaluation Design

An average of results over 10 random pool/test set splits formed the core of our
evaluation technique. Table 5.1 indicates the pool and test set sizes; to compute the
pool set size, subtract the test set size from the number of observations in the entire
data set. On each of the 10 runs, the same random seed examples of size 20, 50, 100
or 200 were given to the learners which proceeded to use their example selecting
function to select new examples. Only results for the seed size 20 are reported;
results from alternative starting points look more and more like random observation
sampling as the seed size increases. Results for the alternative starting points are
available on request.

Results are reported once the learner has reached the data set stopping points
given in Table 5.3. At each iteration of observation selection, 10 candidates were
chosen at random from the pool and the tested method chose the next example
from those 10. The number 10 was used because larger numbers cause variance, log
loss and CC methods to slow proportionately (see discussions of asymptotics, Sec-
tion 4.3). On the other hand, fixing the sample size at 10 allows for fair comparison
across all methods. Chapter 6 examines the sensitivity of the heuristic methods’
performance to this parameter.

All evaluations employed a logistic regression using the regularization 03 =1 for
100 iterations or convergence for the seed set. Once additional data was added, the
model parameters were updated 20 iterations or until convergence.

In generating results for straw men bagging and random sampling, the same

seed examples are used, and then followed by additional random sampling to form
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training sets of appropriate size.

5.5 Presentation of Results

This section presents several different views of the evaluation results incorporating
various tables and figures. A guiding principle to keep in mind is that each of these
devices present the same evaluation, but explore different components. For instance,
Figures 5.2-5.5 present learning curves for each of the data set in the right column,
while the left column shows Box plots of the distribution of accuracies at the stopping
point (300 observations in most cases).

The Box plots show the mean accuracy as a solid diamond, while Table 5.3
contains the result of a hypothesis test on the mean: comparing different alternatives
to random sampling. Table 5.4 measures the performance gain (or loss) due to active
learning as a percentage of random stopping point observations necessary to give
similar performance.

Table 5.2 shows the accuracies attainable by training on the entire pool of unla-
beled data. This information gives an understanding of how much continued labeling
of training data can help. The learning curves in Figures 5.2-5.5 convey the same

information as a horizontal line towards the top of the y-axis.

5.6 Discussion of Primary Evaluation Results

Variance and log loss reduction gave the best results; they provided above-random
performance on four of the data sets while never giving less than random perfor-
mance. The results do not support any definitive reason to draw favorites between
variance or log loss. Though not statistically significant, the weak performance on
the TIMIT data set by variance reduction suggests favoring log loss.

Maximum entropy sampling results are the worst of all methods tested. In order
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Figure 5.2: Box plots and learning curves for Art, ArtNoisy and ArtConf data sets.
Box plots show the distribution of the accuracy at the training set stopping point,
with a black diamond indicating the mean. In the learning curves, random per-
formance is drawn as connected points. Confidence bars indicate the variability of
competing active learning schemes.
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Figure 5.3: Box plots and learning curves for Comp2a, Comp2b and LetterDB data
sets. Box plots show the distribution of the accuracy at the training set stopping
point, with a black diamond indicating the mean. In the learning curves, random
performance is drawn as connected points. Confidence bars indicate the variability
of competing active learning schemes.
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Table 5.2: Average accuracy and squared error (Equation 4.1, left hand side) results
for the tested data sets when the entire pool is used as the training set. The data
sets are sorted by squared error as detailed in Section 5.5.
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Data Set ‘ Accuracy Squared Error
TIMIT 0.525 0.616
ArtNoisy 0.602 0.52
LetterDB 0.764 0.352
NewsGroups 0.820 0.296
ArtConf 0.844 0.155
WebKB 0.907 0.143
Art 0.919 0.130
Comp2a 0.885 0.086
Comp2b 0.889 0.083
OptDigits 0.964 0.059
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Figure 5.5: Box plot and learning curves for the WebKB data set. The Box plot
shows the distribution of the accuracy at the training set stopping point, with a
black diamond indicating the mean. In the learning curve, random performance is
drawn as connected points. Confidence bars indicate the variability of competing
active learning schemes.
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Table 5.3: Results of hypothesis tests comparing bagging and seven active learning
method accuracies to random sampling at the final training set size. ‘+’ indicates
statistically significant improvement and ‘-’ indicates statistically significant deteri-
oration. ‘NA’ indicates ‘not applicable.” Figures 5.2-5.5 display the actual means
used for hypothesis testing as solid diamonds in the box plots.

Data Set random bagging  variance log loss
Art NA - + +
ArtNoisy NA - + +
ArtConf NA

Comp2a NA -

Comp2b NA

LetterDB NA - + +
NewsGroups NA - NA NA
OptDigits NA + +
TIMIT NA -

WebKB NA - NA NA

CC QBB-MN QBB-AM entropy margin

Art +  + + + +
ArtNoisy + - +
ArtConf - -
Comp2a -

Comp2b

LetterDB + - + - +
NewsGroups NA - - - -
OptDigits +  + + + +
TIMIT - + - +
WebKB NA + + + +
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Table 5.4: Results comparing random sampling, bagging, and seven active learning
methods reported as the percentage of random examples over (or under) the final
training set size needed to give similar accuracies. Active learning methods were
seeded with 20 random examples, and stopped when training set sizes reached fi-
nal tested size (300 observations with exceptions; see Section 5.4 for details on the
rationale for different stopping points).

Data Set random bagging  variance log loss
Art 100 73 >200 > 200
ArtNoisy 100 80 150 150
ArtConf 100 83 108 100
Comp2a 100 73 87 140
Comp2b 100 87 113 93
LetterDB 100 83 127 127
NewsGroups 100 7 - -
OptDigits 100 103 117 143
TIMIT 100 80 97 103
WebKB 100 73 - -

CC QBB-MN QBB-AM entropy margin

Art 110 160 > 200 123 >200
ArtNoisy 103 140 117 53 117
ArtConf 117 117 92 42 42
Comp2a 60 100 100 127 100
Comp2b 93 107 113 107 100
LetterDB 113 83 120 60 120
NewsGroups - 97 93 57 87
OptDigits 133 133 >200 >200 >200
TIMIT 97 140 30 127
WebKB - 120 190 153 177
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to assess what properties of the data sets cause entropy sampling to fail we report
the residual error (Equation 4.8) of each data set after training on the entire pool
in Table 5.2. The data sets sort neatly by noise, with entropy sampling failing on
more noisy data such as TIMIT and performing at least as well as random for all

data sets less noisy than WebKB.

Margin sampling results are quite good except for two notable failures on the
ArtConf and NewsGroups data set. These two data sets are characterized by hi-
erarchical categories. In the case of the NewsGroups data set, this can be seen by
inspection of Table 5.5. For instance, the five comp.* topics are harder to disam-
biguate amongst themselves than between the alt.politics.* groups. ArtConf
has this confusion property by construction, and was designed specifically to ver-
ify this weakness of margin sampling. Section 5.8.1 explores the cause of margin

sampling’s failures in greater detail.

Before examining the QBB method results it is useful to analyze bagging since it
is a key ingredient. The results for bagging are almost entirely negative, a possibility
anticipated in the bagging literature [9]. Our own results in measuring variance in
Figures 5.6-5.7 indicate that variance is usually small in comparison to squared error.
In contrast, bagging is known to work well with highly unstable methods such as
decision trees, which are associated with large amounts of variance. We speculate
that it would take very many bag members to improve the variance of the logistic
regression model. MacKay [47] gives a parametric solution to the problem of variance

reduction of logistic regression that may prove more expedient.

The query by bagging results themselves were comparable to margin sampling,
with QBB-AM providing some resilience to the presence of hierarchical categories.
The CC method frequently performed strongly, but with notable failures on the
Comp2a and TIMIT data sets.
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Table 5.5: The structure of the NewsGroups data set.

comp.graphics

. . rec.autos sci.crypt
comp.os.ms-windows.misc . .
. rec.motorcycles sci.electronics
comp.sys.ibm.pc.hardware .
rec.sport.baseball sci.med
comp.sys.mac.hardware .
rec.sport.hockey sci.space

comp.windows.x

talk.religion.misc . talk.politics.misc

. misc.forsale _
alt.atheism talk.politics.guns
soc.religion.christian talk.politics.mideast

5.7 An Analysis of Bias and Variance

Since the loss function methods attempt to minimize variance, it is useful to analyze
bias and variance as contributions to squared error on the evaluated data sets. Fig-
ures 5.6-5.7 report squared error along with bootstrap estimates of bias and variance
using random training sets with sizes: 20, 50, 100, and 200. Bias generally domi-
nates variance, and the difference is frequently larger initially. The two natural data
sets where the loss function techniques perform best, LetterDB and OptDigits, are
characterized by having the largest initial variance. On the other hand, performance
on data sets with relatively low initial variance can improve by lowering variance

further, as can be seen on the Art and ArtNoisy data sets.

Friedman [30] articulates the roles of (squared) bias and variance in 0/1 loss as
follows. When bias is beneficial (the expected classification is on the correct side
of the decision boundary), decreasing variance can help, but decreasing bias further
will have no effect. Similarly, when bias is detrimental (the expected classification
is on the wrong side of the decision boundary), then decreasing variance will hurt

classification results.

Deciding to decrease variance indicates an assumption that the boundary bias is

beneficial, and therefore variance reduction will help. Such an assumption should
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Figure 5.6: Squared error along with bootstrap estimates of bias and variance for Art,
ArtNoisy, ArtConf, Comp2a, Comp2b, and LetterDB data sets at different training
set sizes.
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NewsGroups, OptDigits, TIMIT, and WebKB data sets at different training set sizes.
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play out differently for different types of data sets. For optical character recognition
decreasing variance is helpful (see LetterDB and OptDigits results). For document
classification, the results indicate that variance is not a significant deterrence for
good classification accuracy (see Box plots for Comp2a and b). Those interested in
applying active learning in natural language domains will want to further examine the
possibility that low prediction variance in regularized logistic regression is intrinsic
to large sparse predictor sets. If variance is naturally low, then a bias reduction

procedure will prove more useful in early portions of training.

5.8 Margin Sampling Diagnostics

The most computationally tractable method evaluated, margin sampling, also hap-
pens to be a competitive performer compared to the other heuristics. Since the
method is simple, it may be feasible to understand the conditions under which it
fails. We examine two related hypothesis as causes of margin sampling’s failure:
presence of hierarchical or clustered category structure and quality of the margin
estimates. There are two data sets where margin sampling fails: ArtConf and News-

Groups. These data sets form the basis for the analysis.

5.8.1 Category Structure as a Cause of Failure

What do we mean by hierarchical category structure? An example is the NewsGroups
data set where certain topics are more similar to each other than others. There are
five topics related to computing, and they all share the same prefix: comp. Table 5.6
shows the NewsGroups data set with human clusterings of related topics. This table
is presented on a download web site for the NewsGroups data set'. For those who
prefer to “let the data speak,” Figure 5.1 shows an automated clustering of the data

set. We took the rows of the confusion matrix as observation vectors and perform

! http://people.csail.mit.edu/jrennie/20Newsgroups/
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clustering using cosine similarity. Figure 5.1 presents the result of an agglomerative
clustering algorithm.

Figure 5.1 confirms the hypothesis that clusters of confusable categories ex-
ist within the data. The clusters roughly fall in line with the a priori groupings
given in Table 5.6, which are taken from the NewsGroups download site. However
there are some notable differences, for instance the comp.* categories “leak” into
for misc.forsale and sci.electronics category clusters. Auto and motorcycle
categories form their own cluster, the various religion topics form their own cluster,
and two of the political topics cluster together. Also, there are a handful of topics
that do not cluster as expected. For instance, the sports topics are distinct according
to the clustering.

The theory underlying clustered category structure and margin sampling follows.
Data sets with inherently confusable decision boundaries as well as relatively clear
decision boundaries will cause margin sampling to oversample the confusable regions,
leading to bad performance. The ArtConf is generated according to this intuition,
and the empirical results using ArtConf add confidence to the theory.

For NewsGroups data set, the clustered category hypothesis does not appear to
be the immediate cause of margin sampling underperformance. Table 5.6 shows the
NewsGroups topics and their rounded average abundance in selection after reaching
300 examples in the training set using margin sampling. The single-most sampled
category is sci.med, which does not cluster with any topic. The other counts appear
to have no pattern, and it is surprising how close to uniform the counts are. There
must be some other cause of the failure of margin sampling on the NewsGroups data

set.

5.8.2 Decision Boundary Quality and Margin Sampling

Another problem that may arise in margin sampling is that the margin may be

poorly estimated. This can be expected to occur when the training set size is small,
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Table 5.6: Counts of different categories picked after using margin sampling on the
NewsGroups data set.

Category Number Picked by Margin Sampling
comp.graphics 18
comp.os.ms-windows 13
comp.sys.ibm.pc.hardware 19
comp.sys.mac.hardware 12
comp.windows.x 17
talk.religion.misc 12
alt.atheism 14
soc.religion.christian 17
rec.autos 11
rec.motorcycles 16
rec.sport.baseball 13
rec.sport.hockey 12
misc.forsale 13
sci.crypt 17
sci.electronics 17
sci.med 26
sci.space 15
talk.politics.misc 12
talk.politics.guns 17
talk.politics.mideast 16

69



Table 5.7: The average percentage of matching test set margins when comparing
models trained on data sets of size 300 to a model trained on the pool. Ten repetitions
of the experiment produce the averages below.

Data Set ‘ Correct Margin Percentage

Art 64.1
ArtNoisy 58.6
ArtConf 51.1

LetterDB 36.8
NewsGroups 15.1
OptDigits 57.8
TIMIT 34.4

but perhaps also in the presence of clustered category structure. One specific sense
in which the margin can be poorly estimated is when the two categories forming the
margin differ between small and large training set sizes (recall the formal definition
of margin given in Equation 2.28). We test this theory by measuring the percentage
of times the two categories match using the entire pool and random samples of size

300.

Table 5.7 contains the results of the analysis averaged over ten runs. The results
confirm that NewsGroups has the worse estimation of margin at 15% correct, and this
appears the most likely source of margin sampling’s difficulty. In turn, the presence
of an elaborately structured confusion matrix such as illustrated in Figure 5.1 may

predict poor estimation of margin.

The problem of poor margin estimates is unique to margin sampling in the pres-
ence of more than two categories. A large portion of previous evaluations of margin
sampling have considered binary classification. Understanding the potential for poor
margin estimates will be critical to the application of margin sampling in domains

with many categories.
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5.9 Summary

Our evaluations of active learning using logistic regression are the most comprehen-
sive to date. Variance and log loss reduction based on A-optimality are the most
robust methods tested, giving strong performance while never performing worse than
random. Analysis of the bias and variance portions of the squared loss suggest that
the loss-based methodology presented in this dissertation is best suited for classifi-
cation error reduction when variance is a large portion of squared error for small to
moderate training set sizes. We found this to be the case on the two optical character
recognition data sets.

Sampling using Shannon entropy as an uncertainty measure fails as the noise level
in the data increases. Margin sampling fails in the presence of either hierarchically
related categories or poor estimates of margin. The danger of these pathologies in-
crease with greater numbers of categories. Results with query by committee variants
and CC were mixed, but it was difficult to interpret the causes of their failure when
they performed badly. With the exception of entropy sampling’s poor performance,
the data does not support favoring any of the heuristics over its pears from a clas-
sification accuracy standpoint. Using computational time as a tie breaker, margin

sampling is the recommended heuristic method.
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Chapter 6

Further Evaluation of Heuristic

Methods

The evaluations of Chapter 6 were necessarily restricted so that the computationally
expensive experimental design methods could be evaluated. In this chapter, we
explore other choices for the parameters of evaluation in order to gauge their effects
on the fast-running heuristic methods. Section 6.1 looks at the starting point of
evaluation to determine whether giving more initial seed examples leads to better
results. Section 6.2 looks at the number of examples the active learner has to pick
from to determine whether faster learning occurs with greater options. Section 6.3

examines the effects of bag size on the query by bagging methods of active learning.

6.1 Examining the Effect of the Evaluation Start-
ing Point

The evaluations of Chapter 5 use a starting point of 20 random observations as a
seed set from which the competing active learning methods may select new examples.
This section employs a much larger starting point of 300 observations to explore what

happens when the active learners are given more initial information about the model.
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Table 6.1: Results of hypothesis tests comparing bagging and four active learning
method accuracies to random sampling at training set size 600. ‘+’ indicates statisti-
cally significant improvement and ‘-’ indicates statistically significant deterioration.
‘NA’ indicates ‘not applicable.” Figures 6.1- 6.2 display the actual means used for
hypothesis testing.

Data Set random bagging QBB-MN QBB-AM entropy margin

LetterDB NA + - +
NewsGroups NA -
TIMIT NA -
WebKB NA - + + + +

Evaluations stop after the 600’th example is selected; the active learners pick one
half of the total examples at the stopping point.

This analysis of using “late” starting and stopping points only makes sense when
there is room for more accuracy improvement at 600 examples. The following data
sets have this property: LetterDB, NewsGroups, TIMIT, and WebKB, whereas the
other six data sets used in Chapter 5 do not. Table 6.1 shows the results of hypothesis
tests of stopping point accuracies against the random baseline. Figures 6.1 - 6.2 give
a more detailed account incorporating learning curves and final accuracy box plots.

Comparing the hypothesis testing results of Table 6.1 to the original evaluation
(Table 5.3), seven statistically significant negative results reverted to nonsignificant
results, while two positive results became nonsignificant. Most notably absent among
the changes is a switch from a significant negative result to a significant positive result

(or vice versa).

6.2 Examining the Effect of Candidate Sample Size

In Chapter 5 each active learning method selects from 10 random examples from the
pool. A potential criticism of the evaluation is that the candidate sample size of 10

is rather small. A question arises: how would the heuristics perform if they could
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LetterDB Accuracies at 600 Observations LetterDB Data Set

078 T T T T T

076F 1 71 TIIIITIIIIIIIIIITINIIIIITIIA
g4

074 | E
°
S 072 | ]

0.69
.
Accuracy
o
S o
g 2
T T
om
oprom
on
\

Y e

id % % %
B 064 3 FER B
: . o62f 7 ¥'x + { 1
N . L, 11 |
] 06 } {
g | : 058 . . . . .
; ; ; ; ; . 300 350 400 450 500 550 600
bagaing entropy margin QBC-AM QBC-MN random Number of Observations
2t 600 Observation NewsGroups Data Set
09 T T T T T
o
08s | 1
8 —_
H
08 | 1
g ] : 075 | bagging
g — : ceiling performance
I ; entropy 1%
: 07 1 margin
@ | | L QBC-AM +-&-—1
84 ; : S L QBC-MN -
' . s
— i:i ‘ £ osr
B8 J— M H < .
S | e
| 055 s & E PR
g : Cprpieptiid
3 4 s . 05 | ¥ ggﬁ % TT
— 8 — | 0.45!'§§$} T}{ 1
o :
B L s Tz
g L 035 . . . . .
s ; ; ; ; ; ; 300 350 400 450 500 550 600
bagaing entropy margin QBC-AM QBC-MN random Number of Observations
TIMIT Accuracies at 600 Observations TIMIT Data Set
0.54 T
8 T
° 052 |- 4
o
g 4 :
° o 05 4
37 : —_ 0.48 | ]

0.47
L
B
.
.
Accuracy
°
IS
5
T
—

-
[EN—
s et
R A——
et

e
e
b
R VS

RS,

H—t—ao-u-

b won

b

0.45 0.46
‘
.
.
s e
2 2
5 %
—
[EETED -
,—Ha._-f‘ ——
b om
RSN o
e
o
@
5
3
=
@
g
3
E
EH
:
g
! }
‘

. p—— — — 04 . . . . “random c-a-
34 . , , . 300 350 400 450 500 550 600

T T
bagging entropy margin QBC-AM QBC-MN random Number of Observations

Figure 6.1: Box plots and learning curves for LetterDB, NewsGroups, and TIMIT
data sets with late starting and stopping points. Box plots show the distribution of
the accuracy at the training set stopping point, with a black diamond indicating the
mean. In the learning curves, random performance is drawn as connected points.
Confidence bars indicate the variability of competing active learning schemes.
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WebKB Accuracies at 600 Observations WebKB Data Set
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Figure 6.2: Box plots and learning curves for the WebKB data set using late starting
and stopping points. Box plots show the distribution of the accuracy at the training
set stopping point, with a black diamond indicating the mean. In the learning
curves, random performance is drawn as connected points. Confidence bars indicate
the variability of competing active learning schemes.

select from a much larger set of candidates. In this section, we present results where

the heuristic approaches may select from 300 random pool examples instead of 10.

Table 6.2 shows the new hypothesis testing results and should be compared with
Table 5.3. At a course level very little is changed. The most important change in the
table is entropy sampling’s negative result on the Art data set in Table 6.2, converted
from a positive result in Table 5.3. The four methods produced 18 significant positive
cell entries in Chapter 5 along with 10 negative results. By switching the candidate
size to 300 the number of significant positive results decreases to 16 while the number

of negative results increases to 11.

Such minor changes in the cell entries does not prove that increasing the candidate
size produces an inferior method. On the other hand, increasing candidate size is
clearly not a panacea. To give a more detailed account of what happens with the
300 sample size, Figures 6.3-6.6 show learning curves and final accuracy box plots

for the evaluation.
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Art Accuracies at 300 Observations Art Data Set
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Figure 6.3: Box plots and learning curves for Art, ArtNoisy and ArtConf data sets
using a candidate sample size of 300. Box plots show the distribution of the accuracy
at the training set stopping point, with a black diamond indicating the mean. In
the learning curves, random performance is drawn as connected points. Confidence
bars indicate the variability of competing active learning schemes.
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Comp2a Accuracies at 150 Observations
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Figure 6.4: Box plots and learning curves for Comp2a, Comp2b and LetterDB data
sets using a candidate sample size of 300. Box plots show the distribution of the
accuracy at the training set stopping point, with a black diamond indicating the
mean. In the learning curves, random performance is drawn as connected points.
Confidence bars indicate the variability of competing active learning schemes.
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Figure 6.5: Box plots and learning curves for NewsGroups, OptDigits and TIMIT
data sets using a candidate sample size of 300. Box plots show the distribution of
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Table 6.2: Results of hypothesis tests comparing four heuristic active learning
method accuracies to random sampling at the final training set size. These active
learners used the larger candidate size of 300. ‘+’ indicates statistically significant
improvement and ‘-’ indicates statistically significant deterioration compared to ran-
dom sampling. ‘NA’ indicates ‘not applicable.” Figures 6.3-6.6 display the actual
means used for hypothesis testing.

Data Set random QBB-MN QBB-AM entropy margin

Art NA + + - +

ArtNoisy NA -

ArtConf NA - -

Comp2a NA + +

Comp2b NA + +

LetterDB NA - + -

NewsGroups NA - - -

OptDigits NA + + +

TIMIT NA + - +

WebKB NA - + + +
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Figure 6.6: Box plots and learning curves for the WebKB data set using a candidate
sample size of 300. The Box plot shows the distribution of the accuracy at the
training set stopping point, with a black diamond indicating the mean. In the
learning curves plots, random performance is drawn as connected points. Confidence
bars indicate the variability of competing active learning schemes.
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Table 6.3: Results of hypothesis tests comparing bagging and two query by bagging
methods using a bag size of 15. ‘4’ indicates statistically significant improvement
and ‘-’ indicates statistically significant deterioration. ‘NA’ indicates ‘not applicable.’

Figures 6.7-6.10 display the actual means used for hypothesis testing.
Data Set random bagging QBB-MN QBB-AM

Art NA + +
ArtNoisy NA +

ArtConf NA -
Comp2a NA

Comp2b NA +

LetterDB NA - -
NewsGroups NA -

OptDigits NA + +
TIMIT NA +
WebKB NA - +

6.3 Examining the Effect of Bag Size

In Chapter 5 bagging evaluations, QBB-MN and QBB-AM employ a bag size of 3.
Though the choice of 3 has precedent [51], some researchers have pointed out that it
is a relatively small choice for a bag size. In this section we re-evaluate the bagging
methods using a bag size of 15. Table 6.3 shows hypothesis testing results using the
new bag size, and should be compared with Table 5.3. Figures 6.7- 6.10 show box
plots and learning curves for the same evaluation results.

The most pronounced effect of increasing bag size is that the bagging results im-
prove compared to random sampling. In the original evaluation (Table 5.3), bagging
led to significantly worse performance than random on seven out of nine data sets.
By increasing the bag size, bagging only performs worse than random on two out of
eight data sets. Still, bagging never significantly helps classification accuracy.

For the two query by bagging methods, the change in bag size does not lead to
much change in the overall results. The QBB-MN method improves on the News-

Groups data set by eliminating one of the statistically significant negative results
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Figure 6.7: Box plots and learning curves for Art, ArtNoisy, and ArtConf data
sets using bag size 15. The Box plots show the distribution of the accuracy at
the training set stopping point, with a black diamond indicating the mean. In the
learning curves, random performance is drawn as connected points. Confidence bars
indicate the variability of competing active learning schemes.
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Figure 6.8: Box plots and learning curves for Comp2a, Comp2b, and LetterDB data
sets using bag size 15. The Box plots show the distribution of the accuracy at
the training set stopping point, with a black diamond indicating the mean. In the
learning curves, random performance is drawn as connected points. Confidence bars
indicate the variability of competing active learning schemes.
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the training set stopping point, with a black diamond indicating the mean. In the
learning curves, random performance is drawn as connected points. Confidence bars
indicate the variability of competing active learning schemes.
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Figure 6.10: Box plot and learning curves for the WebKB data set using bag size
15. The Box plot shows the distribution of the accuracy at the training set stopping
point, with a black diamond indicating the mean. In the learning curve plot, random
performance is drawn as connected points. Confidence bars indicate the variability
of competing active learning schemes.

in Table 5.3. Meanwhile, QBB-AM performance degrades on the ArtConf data
set. With the larger bag size, QBB-AM behaves more like margin sampling, nearly
matching the hypothesis testing results of Table 5.3.

6.4 Summary

This chapter isolates three of the most important design issues in active learning
bake-off evaluation and determines their effect upon the performance of active learn-
ing heuristics. The design parameters include: starting point of evaluation, the
number of candidate examples considered for labeling, and the effects of increased
bag size for methods that employ bagging. The goal of the evaluation was to deter-
mine whether any of these parameters dramatically altered performance behavior of
the heuristic active learning methods.

The results indicate that changing these parameters can have moderate effects

on accuracy. However, the observation of Chapter 5 that each heuristic method
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fails on at least one data set remains intact. Changing these parameters did not
lead to consistent improvement for any of the active learning methods as measured
across multiple data sets. On the other hand, since parameter tuning can affect
performance, it is possible to overtune in the context of a research study to produce
a desirable result on a particular data set. Active learning researchers must take

steps to ensure that such overfitting does not occur in their published work.
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Chapter 7

Conclusions

Interest in active learning techniques is largely motivated by situations where labeling
examples is expensive. Techniques that reduce the need for human labeling would
be incredibly seductive as cost effective strategies for building classifiers and other
learners. Through evaluation, this dissertation identifies which of the many active
learning methods work well in conjunction with logistic regression and under what
circumstances.

We applied many of the most prevalent active learning methods to the logis-
tic regression classifier and assessed their performance empirically through “bake-
oftf” evaluations. Of particular interest are implementations of A-optimality and
variants from the experimental design literature. In recent years evaluations have
seldom included experimental design methods as interest has swayed towards the
faster-running heuristic techniques. Along with two experimental design methods
the evaluations include five alternative heuristic methods.

A summary of the dissertation follows with emphasis on identifying the chapters

containing each of the contributions.

e Literature Review
Chapter 2 reviews the most prevalent active learning schemes, focusing on the
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methods that appear best-suited for active learning of logistic regression. Ex-
perimental design methods are introduced along with algorithm-independent
heuristic methods. We ultimately include for evaluation two variants of the un-
certainty sampling method, two methods of query by bagging, and a method
that attempts to increase model certainty as measured by entropy of the

model’s predictions over an unlabeled pool.

Logistic Regression

Chapter 3 introduces the logistic regression model, demonstrating its relation-
ship to a wide variety of probabilistic models currently in use. In addition
to a review of parameter estimation strategies, this chapter explains the sta-
tistical properties of the parameter estimates that prove useful in analytically

estimating the prediction variance of the model over a pool of unlabeled data.

A Loss Function Methodology

Chapter 4 demonstrates a method for estimating and reducing the variance of
model prediction under a quite general set of loss functions. The methodology
is general to loss functions whose second term of a Taylor series expansion
disappears. We explore squared loss and log loss in depth, with analysis of
squared loss leading to a pure variance reduction technique known in Statis-
tics as A-optimality. We discuss the suitability of variance and squared loss
reduction in an active learning setting where the ultimate goal is classification

accuracy.

Primary and Secondary Evaluations

To the best of our knowledge, our empirical evaluation of logistic regression
active learning in Chapter 5 and 6 is the most extensive performed to date in
terms of the number of data sets are used, different types of data sets used,
and the use of multiple random seed set sizes. Similarly, our active learn-

ing evaluation of explicit objective functions motivated by experimental design
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techniques exceeds previous attempts in number of observations sampled, num-
ber of data sets employed, number of model parameters, including the previous
usages of the method with backpropagation neural networks. This is the first
use of the variance reduction technique in logistic regression pool-based active

learning that we know of.

Additional evaluations of the heuristic active learning methods in Chapter 6
support the claim that the various negative results using heuristic active learn-
ing methods are systemic rather than the artifact of some unfortunate evalua-

tion parameter choice.

The evaluations establish that loss function active learning is the most robust
strategy available, providing attractive results yet never performing worse than ran-
dom sampling. Future work in active learning using logistic regression will benefit
from evaluating against these gold standard methods. Furthermore, we have dis-
missed a complaint that the method is computationally intractable. Although the
number of parameters and number of observations is a limiting factor in use of the
loss function methods, there are very many data sets where modern computing plat-
forms make implementation practical.

The results also expose the weaknesses of many of the active learning algorithms.
The loss function methods have the disadvantage of memory and computational
complexity, and we were unable to evaluate them on two of the larger document
classification tasks. All of the heuristic methods fail to beat random sampling on
some portion of the evaluation. The result is so surprising that a separate chapter
(6) is included to verify that negative heuristic performance is not an artifact of an
“unlucky” evaluation design.

We find that most heuristics perform roughly equally well, but it is easier to anal-
ysis the cause of failure among the simplest heuristics. In the case of uncertainty
sampling using the Shannon entropy measure of uncertainty, bad performance goes

hand in hand with noise, as defined by the portion of squared error that is training
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set size independent. For margin sampling, negative results correlate with oversam-
pling of intrinsically uncertain regions. This hypothesis is tested with the artificially
constructed ArtConf data set. Margin sampling also finds multi-category data sets
with difficult margin prediction challenging, for instance the NewsGroup data set.
Despite this problem, margin sampling remains very attractive compared to heuristic

alternatives due to its computational time advantages.
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Appendix A

Variance Reduction in the Binary

Case

Variance of the binary classifier takes the form:
Varp[o(W'x)] = Ep[(c(W'x) — Ep[o(w'x)])?]. (A.1)

The training set D determines the parameters w'. The expectations are with respect
to differing training sets of size s, as in Chapter 4.
In order to approximate Equation A.1, take two steps of a Taylor series around

the logistic function giving;:

o(w'x) = o(w'x)+c(Ww—w)+ Op(%), where (A.2)
c = (%U(W'X), ooy aiﬁda(w'x))'. (A.3)

The asymptotics follow from the results of Section 3.7 of Chapter 3.
Next, taking the variance of both sides of Equation A.2 yields:
Varp[o(W'x)] = Varp[c' (W — w)] (A.4)
~ JdF7'c (A.5)

! The presentation assumes the model is identifiable... this simplifies the notation needed.
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where I’ is the Fisher information matrix and the second step follows from Equa-
tion 3.34. The Fisher information matrix for the regularized logistic regression is

derived according to Equation 2.18:

F = ! Y xx'o(w'x)(1 - o(w'x)) +[02I]_1, (A.6)

§ (xy)eD

where NNV is the size of the training set D, and o), is the regularization parameter.
From here, Equation A.5 simplifies by manipulating the ¢ vectors into the A
matrix as follows. Define A4, = ¢,c,, A = Y, A,, where the index n is over pool

observations. Then Equation A.5 simplifies:

Y dF e, = Ztr{cnc;F_l} (A7)
= Yt {a,Fr} (A.8)
= tr{AF}. (A.9)

As an additional comment, we exploited a property of the binary logistic regres-
sion Fisher information matrix to facilitate evaluation of the comp2a and comp2b
data sets. The Sherman-Morrison formula allows for more speedy computation of
Equation A.9 when the training set is small, but the number of predictors is large.
Such is the case for document classification data sets where many thousand of unique
word tokens can appear in a random sample of several hundred documents. The ma-
trix inversion lemma, which goes by many names including the Sherman-Morrison

formula, defines the inverse of such a structured matrix.

Lemma 1 Let F = (R™!' + X'DX) where R and D are both diagonal, and X is a
T x D matriz with T << D. Then

F'=R+RX (D' + XRX') 'XR, (A.10)

an O(T? + TD?) operation.
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For binary logistic regression AF~! may be computed in this way with time savings
since Equation A.6 factors into (R™! + X’DX). With F~! pre-computed, the trace

computation tr { AF~'} is a quadratic operation.
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